Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit3 | |
# Copyright (c) 2023 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# --------------------------------------------------------' | |
import math | |
import sys | |
import json | |
from typing import Iterable, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.utils import ModelEma | |
from timm.utils import accuracy, ModelEma | |
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy | |
from datasets import get_sentencepiece_model_for_beit3 | |
import utils | |
class TaskHandler(object): | |
def __init__(self) -> None: | |
self.metric_logger = None | |
self.split = None | |
def train_batch(self, model, **kwargs): | |
raise NotImplementedError() | |
def eval_batch(self, model, **kwargs): | |
raise NotImplementedError() | |
def before_eval(self, metric_logger, data_loader, **kwargs): | |
self.metric_logger = metric_logger | |
self.split = data_loader.dataset.split | |
def after_eval(self, **kwargs): | |
raise NotImplementedError() | |
class NLVR2Handler(TaskHandler): | |
def __init__(self) -> None: | |
super().__init__() | |
self.criterion = torch.nn.CrossEntropyLoss() | |
def train_batch(self, model, image, image2, language_tokens, padding_mask, label): | |
logits = model( | |
image_a=image, image_b=image2, | |
text_description=language_tokens, | |
padding_mask=padding_mask) | |
acc = (logits.max(-1)[-1] == label).float().mean() | |
return { | |
"loss": self.criterion(input=logits, target=label), | |
"acc": acc, | |
} | |
def eval_batch(self, model, image, image2, language_tokens, padding_mask, label): | |
logits = model( | |
image_a=image, image_b=image2, | |
text_description=language_tokens, | |
padding_mask=padding_mask) | |
batch_size = language_tokens.shape[0] | |
acc = (logits.max(-1)[-1] == label).float().sum(0) * 100.0 / batch_size | |
self.metric_logger.meters['acc'].update(acc.item(), n=batch_size) | |
def after_eval(self, **kwargs): | |
print('* Acc {acc.global_avg:.3f}'.format(acc=self.metric_logger.acc)) | |
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc" | |
class ImageNetHandler(TaskHandler): | |
def __init__(self, args) -> None: | |
super().__init__() | |
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None | |
if mixup_active: | |
# smoothing is handled with mixup label transform | |
self.criterion = SoftTargetCrossEntropy() | |
elif args.label_smoothing > 0.: | |
self.criterion = LabelSmoothingCrossEntropy(smoothing=args.label_smoothing) | |
else: | |
self.criterion = torch.nn.CrossEntropyLoss() | |
def train_batch(self, model, image, label): | |
logits = model(image=image) | |
return { | |
"loss": self.criterion(logits, label), | |
} | |
def eval_batch(self, model, image, label): | |
logits = model(image=image) | |
batch_size = image.shape[0] | |
acc1, acc5 = accuracy(logits, label, topk=(1, 5)) | |
self.metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) | |
self.metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) | |
def after_eval(self, **kwargs): | |
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}' | |
.format(top1=self.metric_logger.acc1, top5=self.metric_logger.acc5)) | |
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc1" | |
class RetrievalHandler(TaskHandler): | |
def __init__(self) -> None: | |
super().__init__() | |
self.image_feats = [] | |
self.text_feats = [] | |
self.image_ids = [] | |
self.metric_logger = None | |
def train_batch(self, model, image, language_tokens, padding_mask, image_id): | |
loss, vision_cls, language_cls = model( | |
image=image, text_description=language_tokens, padding_mask=padding_mask) | |
return { | |
"loss": loss, | |
} | |
def before_eval(self, metric_logger, **kwargs): | |
self.image_feats.clear() | |
self.text_feats.clear() | |
self.image_ids.clear() | |
self.metric_logger = metric_logger | |
def eval_batch(self, model, image, language_tokens, padding_mask, image_id): | |
vision_cls, _ = model(image=image, only_infer=True) | |
_, language_cls = model( | |
text_description=language_tokens, padding_mask=padding_mask, only_infer=True) | |
self.image_feats.append(vision_cls.clone()) | |
self.text_feats.append(language_cls.clone()) | |
self.image_ids.append(image_id.clone()) | |
def after_eval(self, **kwargs): | |
image_feats = {} | |
for feats, ids in zip(self.image_feats, self.image_ids): | |
for i, _idx in enumerate(ids): | |
idx = _idx.item() | |
if idx not in image_feats: | |
image_feats[idx] = feats[i] | |
tiids = torch.cat(self.image_ids, dim=0) | |
iids = [] | |
sorted_tensors = [] | |
for key in sorted(image_feats.keys()): | |
sorted_tensors.append(image_feats[key].view(1, -1)) | |
iids.append(key) | |
image_cls_feats = torch.cat(sorted_tensors, dim=0) | |
text_cls_feats = torch.cat(self.text_feats, dim=0) | |
scores = image_cls_feats @ text_cls_feats.t() | |
iids = torch.LongTensor(iids).to(scores.device) | |
print("scores: {}".format(scores.size())) | |
print("iids: {}".format(iids.size())) | |
print("tiids: {}".format(tiids.size())) | |
topk10 = scores.topk(10, dim=1) | |
topk5 = scores.topk(5, dim=1) | |
topk1 = scores.topk(1, dim=1) | |
topk10_iids = tiids[topk10.indices] | |
topk5_iids = tiids[topk5.indices] | |
topk1_iids = tiids[topk1.indices] | |
tr_r10 = (iids.unsqueeze(1) == topk10_iids).float().max(dim=1)[0].mean() | |
tr_r5 = (iids.unsqueeze(1) == topk5_iids).float().max(dim=1)[0].mean() | |
tr_r1 = (iids.unsqueeze(1) == topk1_iids).float().max(dim=1)[0].mean() | |
topk10 = scores.topk(10, dim=0) | |
topk5 = scores.topk(5, dim=0) | |
topk1 = scores.topk(1, dim=0) | |
topk10_iids = iids[topk10.indices] | |
topk5_iids = iids[topk5.indices] | |
topk1_iids = iids[topk1.indices] | |
ir_r10 = (tiids.unsqueeze(0) == topk10_iids).float().max(dim=0)[0].mean() | |
ir_r5 = (tiids.unsqueeze(0) == topk5_iids).float().max(dim=0)[0].mean() | |
ir_r1 = (tiids.unsqueeze(0) == topk1_iids).float().max(dim=0)[0].mean() | |
eval_result = { | |
"tr_r10": tr_r10.item() * 100.0, | |
"tr_r5": tr_r5.item() * 100.0, | |
"tr_r1": tr_r1.item() * 100.0, | |
"ir_r10": ir_r10.item() * 100.0, | |
"ir_r5": ir_r5.item() * 100.0, | |
"ir_r1": ir_r1.item() * 100.0, | |
"average_score": 100.0 * (tr_r1 + tr_r5 + tr_r10 + ir_r1 + ir_r5 + ir_r10).item() / 6.0, | |
} | |
print('* Eval result = %s' % json.dumps(eval_result)) | |
return eval_result, "average_score" | |
class VQAHandler(TaskHandler): | |
def __init__(self) -> None: | |
super().__init__() | |
self.predictions = [] | |
self.criterion = nn.BCEWithLogitsLoss(reduction='mean') | |
self.label2ans = None | |
def train_batch(self, model, image, language_tokens, padding_mask, labels): | |
logits = model( | |
image=image, question=language_tokens, | |
padding_mask=padding_mask) | |
return { | |
"loss": self.criterion(input=logits.float(), target=labels.float()) * labels.shape[1], | |
} | |
def before_eval(self, metric_logger, data_loader, **kwargs): | |
self.predictions.clear() | |
self.metric_logger = metric_logger | |
self.label2ans = data_loader.dataset.label2ans | |
def eval_batch(self, model, image, language_tokens, padding_mask, labels=None, qid=None): | |
logits = model( | |
image=image, question=language_tokens, | |
padding_mask=padding_mask) | |
batch_size = language_tokens.shape[0] | |
if labels is not None: | |
scores = utils.VQAScore()(logits, labels) * 100.0 | |
self.metric_logger.meters['score'].update(scores.item(), n=batch_size) | |
else: | |
_, preds = logits.max(-1) | |
for image_id, pred in zip(qid, preds): | |
self.predictions.append({ | |
"question_id": image_id.item(), | |
"answer": self.label2ans[pred.item()], | |
}) | |
def after_eval(self, **kwargs): | |
if len(self.predictions) == 0: | |
print('* Score {score.global_avg:.3f}'.format(score=self.metric_logger.score)) | |
return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "score" | |
else: | |
return self.predictions, "prediction" | |
class CaptioningHandler(TaskHandler): | |
def __init__(self, args) -> None: | |
super().__init__() | |
self.predictions = [] | |
self.criterion = utils.BertCaptioningLoss(args.label_smoothing, args.drop_worst_ratio, args.drop_worst_after) | |
self.tokenizer = get_sentencepiece_model_for_beit3(args) | |
self.num_beams = args.num_beams | |
self.max_len = args.num_max_bpe_tokens | |
self.length_penalty = args.length_penalty | |
self.vocab_size = args.vocab_size | |
def train_batch(self, model, image, language_tokens, masked_tokens, language_masked_pos, padding_mask, image_id, global_step): | |
logits, _ = model( | |
image=image, text_ids=masked_tokens, padding_mask=padding_mask, language_masked_pos=language_masked_pos, image_id=image_id) | |
masked_labels = language_tokens[language_masked_pos.bool()] | |
score = torch.max(logits, -1)[1].data == masked_labels | |
acc = torch.sum(score.float()) / torch.sum(language_masked_pos) | |
return { | |
"loss": self.criterion(logits, masked_labels, global_step), | |
"acc": acc | |
} | |
def before_eval(self, metric_logger, data_loader, **kwargs): | |
self.predictions.clear() | |
self.metric_logger = metric_logger | |
def eval_batch(self, model, image, image_id=None): | |
cur_len = 2 | |
num_keep_best = 1 | |
TOPN_PER_BEAM = 3 | |
batch_size = image.size(0) | |
mask_id = self.tokenizer.mask_token_id | |
cls_id = self.tokenizer.cls_token_id | |
pad_id = self.tokenizer.pad_token_id | |
sep_id = self.tokenizer.sep_token_id | |
eos_token_ids = [sep_id] | |
cls_ids = torch.full( | |
(batch_size, 1), cls_id, dtype=torch.long, device=image.device | |
) | |
mask_ids = torch.full( | |
(batch_size, 1), mask_id, dtype=torch.long, device=image.device | |
) | |
cur_input_ids = torch.cat([cls_ids, mask_ids], dim=1) | |
tmp_ids = torch.full( | |
(batch_size, self.max_len-1), mask_id, dtype=torch.long, device=image.device | |
) | |
decoding_results = torch.cat([cls_ids, tmp_ids], dim=1) | |
# Expand input to num beams | |
cur_input_ids = cur_input_ids.unsqueeze(1).expand(batch_size, self.num_beams, cur_len) | |
cur_input_ids = cur_input_ids.contiguous().view(batch_size * self.num_beams, cur_len) # (batch_size * num_beams, cur_len) | |
decoding_results = decoding_results.unsqueeze(1).expand(batch_size, self.num_beams, self.max_len) | |
decoding_results = decoding_results.contiguous().view(batch_size * self.num_beams, self.max_len) # (batch_size * num_beams, cur_len) | |
image = image.unsqueeze(1).expand(batch_size, self.num_beams, image.size(-3), image.size(-2), image.size(-1)) | |
image = image.contiguous().view(batch_size * self.num_beams, image.size(-3), image.size(-2), image.size(-1)) | |
generated_hyps = [ | |
utils.BeamHypotheses( | |
num_keep_best, self.max_len, length_penalty=self.length_penalty, early_stopping=False | |
) for _ in range(batch_size) | |
] | |
# scores for each sentence in the beam | |
beam_scores = torch.zeros((batch_size, self.num_beams), dtype=torch.float, device=cur_input_ids.device) | |
beam_scores[:, 1:] = -1e9 | |
beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,) | |
# done sentences | |
done = [False for _ in range(batch_size)] | |
incremental_state = {} | |
while cur_len <= self.max_len: | |
next_token_idx = 1 | |
padding_masks = torch.full( | |
cur_input_ids.shape, 0, dtype=torch.long, device=image.device | |
) | |
input_image = image | |
if cur_len != 2: | |
input_image = None | |
outputs, incremental_state_next = model( | |
image=input_image, text_ids=cur_input_ids, language_masked_pos=None, | |
padding_mask=padding_masks, text_len=cur_len, incremental_state=incremental_state) | |
incremental_state = incremental_state_next | |
# assert outputs.shape[1] == token_len | |
scores = outputs[:, next_token_idx, :] # (batch_size * num_beams, vocab_size) | |
scores = F.log_softmax(scores, dim=-1) # (batch_size * num_beams, vocab_size) | |
assert scores.size() == (batch_size * self.num_beams, self.vocab_size) | |
# Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product) | |
_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) | |
# re-organize to group the beam together (we are keeping top hypothesis accross beams) | |
_scores = _scores.view(batch_size, self.num_beams * self.vocab_size) # (batch_size, num_beams * vocab_size) | |
next_scores, next_words = torch.topk(_scores, TOPN_PER_BEAM * self.num_beams, dim=1, largest=True, sorted=True) | |
assert next_scores.size() == next_words.size() == (batch_size, TOPN_PER_BEAM * self.num_beams) | |
# next batch beam content | |
# list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch) | |
next_batch_beam = [] | |
# for each sentence | |
for batch_ex in range(batch_size): | |
# if we are done with this sentence | |
done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item()) | |
if done[batch_ex]: | |
next_batch_beam.extend([(0, pad_id, 0)] * self.num_beams) # pad the batch | |
continue | |
# next sentence beam content | |
next_sent_beam = [] | |
for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]): | |
# get beam and word IDs | |
beam_id = idx // self.vocab_size | |
word_id = idx % self.vocab_size | |
# end of sentence, or next word | |
# if word_id.item() in eos_token_ids or cur_len + 1 == max_len: | |
if (word_id.item() in eos_token_ids and cur_len + 1 <= self.max_len) or (cur_len + 1 == self.max_len): | |
generated_hyps[batch_ex].add( | |
decoding_results[batch_ex * self.num_beams + beam_id, :cur_len].clone(), score.item() | |
) | |
else: | |
next_sent_beam.append((score, word_id, batch_ex * self.num_beams + beam_id)) | |
# the beam for next step is full | |
if len(next_sent_beam) == self.num_beams: | |
break | |
# update next beam content | |
if cur_len + 1 == self.max_len: | |
assert len(next_sent_beam) == 0 | |
else: | |
assert len(next_sent_beam) == self.num_beams | |
if len(next_sent_beam) == 0: | |
next_sent_beam = [(0, pad_id, 0)] * self.num_beams # pad the batch | |
next_batch_beam.extend(next_sent_beam) | |
assert len(next_batch_beam) == self.num_beams * (batch_ex + 1) | |
# sanity check / prepare next batch | |
assert len(next_batch_beam) == batch_size * self.num_beams | |
beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) | |
beam_words = cur_input_ids.new([x[1] for x in next_batch_beam]) | |
beam_idx = cur_input_ids.new([x[2] for x in next_batch_beam]) | |
# re-order batch | |
cur_input_ids = cur_input_ids[beam_idx, :] | |
decoding_results = decoding_results[beam_idx, :] | |
for module in incremental_state: | |
for key in incremental_state[module]: | |
result = incremental_state[module][key].index_select(0, beam_idx) | |
incremental_state[module][key] = result[:,:,:-1,:] | |
next_ids = torch.full( | |
(batch_size * self.num_beams, 1), mask_id, dtype=torch.long, device=image.device | |
) | |
cur_input_ids = torch.cat([beam_words.unsqueeze(1), next_ids], dim=1) | |
decoding_results[:, cur_len-1] = beam_words | |
# update current length | |
cur_len = cur_len + 1 | |
# stop when we are done with each sentence | |
if all(done): | |
break | |
# select the best hypotheses | |
tgt_len = torch.ones(batch_size, num_keep_best, dtype=torch.long) | |
logprobs = torch.zeros(batch_size, num_keep_best, | |
dtype=torch.float).fill_(-1e5).to(cur_input_ids.device) | |
all_best = [] | |
for i, hypotheses in enumerate(generated_hyps): | |
best = [] | |
hyp_scores = torch.tensor([x[0] for x in hypotheses.hyp]) | |
_, best_indices = torch.topk(hyp_scores, | |
min(num_keep_best, len(hyp_scores)), largest=True) | |
for best_idx, hyp_idx in enumerate(best_indices): | |
conf, best_hyp = hypotheses.hyp[hyp_idx] | |
best.append(best_hyp) | |
logprobs[i, best_idx] = conf | |
tgt_len[i, best_idx] = len(best_hyp) + 1 # +1 for the <EOS> symbol | |
all_best.append(best) | |
# generate target batch, pad to the same length | |
decoded = cur_input_ids.new(batch_size, num_keep_best, self.max_len).fill_(pad_id) | |
for batch_idx, best in enumerate(all_best): | |
for best_idx, hypo in enumerate(best): | |
decoded[batch_idx, best_idx, : tgt_len[batch_idx, best_idx] - 1] = hypo | |
decoded[batch_idx, best_idx, tgt_len[batch_idx, best_idx] - 1] = eos_token_ids[0] | |
captions = self.tokenizer.batch_decode(decoded.squeeze(1), skip_special_tokens=True) | |
for qid, pred in zip(image_id, captions): | |
self.predictions.append({ | |
"image_id": qid.item(), | |
"caption": pred, | |
}) | |
def after_eval(self, **kwargs): | |
return self.predictions, "prediction" | |
def get_handler(args): | |
if args.task == "nlvr2": | |
return NLVR2Handler() | |
elif args.task == "vqav2": | |
return VQAHandler() | |
elif args.task in ("flickr30k", "coco_retrieval"): | |
return RetrievalHandler() | |
elif args.task in ("coco_captioning", "nocaps"): | |
return CaptioningHandler(args) | |
elif args.task in ("imagenet"): | |
return ImageNetHandler(args) | |
else: | |
raise NotImplementedError("Sorry, %s is not support." % args.task) | |
def train_one_epoch( | |
model: torch.nn.Module, data_loader: Iterable, | |
optimizer: torch.optim.Optimizer, device: torch.device, | |
handler: TaskHandler, epoch: int, start_steps: int, | |
lr_schedule_values: list, loss_scaler, max_norm: float = 0, | |
update_freq: int = 1, model_ema: Optional[ModelEma] = None, | |
log_writer: Optional[utils.TensorboardLogger] = None, | |
task = None, mixup_fn=None, | |
): | |
model.train(True) | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
header = 'Epoch: [{}]'.format(epoch) | |
print_freq = 10 | |
if loss_scaler is None: | |
model.zero_grad() | |
model.micro_steps = 0 | |
else: | |
optimizer.zero_grad() | |
for data_iter_step, data in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
step = data_iter_step // update_freq | |
global_step = start_steps + step # global training iteration | |
# Update LR & WD for the first acc | |
if lr_schedule_values is not None and data_iter_step % update_freq == 0: | |
for i, param_group in enumerate(optimizer.param_groups): | |
if lr_schedule_values is not None: | |
param_group["lr"] = lr_schedule_values[global_step] * param_group["lr_scale"] | |
# put input data into cuda | |
for tensor_key in data.keys(): | |
data[tensor_key] = data[tensor_key].to(device, non_blocking=True) | |
# print("input %s = %s" % (tensor_key, data[tensor_key])) | |
if loss_scaler is None and tensor_key.startswith("image"): | |
data[tensor_key] = data[tensor_key].half() | |
# mixup for imagenet finetuning | |
if mixup_fn is not None: | |
data["image"], data["label"] = mixup_fn(data["image"], data["label"]) | |
if task in ["coco_captioning", "nocaps"]: | |
data["global_step"] = global_step | |
if loss_scaler is None: | |
results = handler.train_batch(model, **data) | |
else: | |
with torch.cuda.amp.autocast(): | |
results = handler.train_batch(model, **data) | |
loss = results.pop("loss") | |
loss_value = loss.item() | |
if not math.isfinite(loss_value): | |
print("Loss is {}, stopping training".format(loss_value)) | |
sys.exit(1) | |
if loss_scaler is None: | |
loss /= update_freq | |
model.backward(loss) | |
model.step() | |
if (data_iter_step + 1) % update_freq == 0: | |
# model.zero_grad() | |
# Deepspeed will call step() & model.zero_grad() automatic | |
if model_ema is not None: | |
model_ema.update(model) | |
grad_norm = None | |
loss_scale_value = utils.get_loss_scale_for_deepspeed(model) | |
else: | |
# this attribute is added by timm on one optimizer (adahessian) | |
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order | |
loss /= update_freq | |
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, | |
parameters=model.parameters(), create_graph=is_second_order, | |
update_grad=(data_iter_step + 1) % update_freq == 0) | |
if (data_iter_step + 1) % update_freq == 0: | |
optimizer.zero_grad() | |
if model_ema is not None: | |
model_ema.update(model) | |
loss_scale_value = loss_scaler.state_dict()["scale"] | |
torch.cuda.synchronize() | |
metric_logger.update(loss=loss_value) | |
metric_logger.update(loss_scale=loss_scale_value) | |
min_lr = 10. | |
max_lr = 0. | |
for group in optimizer.param_groups: | |
min_lr = min(min_lr, group["lr"]) | |
max_lr = max(max_lr, group["lr"]) | |
metric_logger.update(lr=max_lr) | |
metric_logger.update(min_lr=min_lr) | |
weight_decay_value = None | |
for group in optimizer.param_groups: | |
if group["weight_decay"] > 0: | |
weight_decay_value = group["weight_decay"] | |
metric_logger.update(weight_decay=weight_decay_value) | |
metric_logger.update(grad_norm=grad_norm) | |
if log_writer is not None: | |
kwargs = { | |
"loss": loss_value, | |
} | |
for key in results: | |
kwargs[key] = results[key] | |
log_writer.update(head="train", **kwargs) | |
kwargs = { | |
"loss_scale": loss_scale_value, | |
"lr": max_lr, | |
"min_lr": min_lr, | |
"weight_decay": weight_decay_value, | |
"grad_norm": grad_norm, | |
} | |
log_writer.update(head="opt", **kwargs) | |
log_writer.set_step() | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |
def evaluate(data_loader, model, device, handler): | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
header = 'Test:' | |
# switch to evaluation mode | |
model.eval() | |
handler.before_eval(metric_logger=metric_logger, data_loader=data_loader) | |
for data in metric_logger.log_every(data_loader, 10, header): | |
for tensor_key in data.keys(): | |
data[tensor_key] = data[tensor_key].to(device, non_blocking=True) | |
with torch.cuda.amp.autocast(): | |
handler.eval_batch(model=model, **data) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
return handler.after_eval() | |