Tzktz's picture
Upload 7664 files
6fc683c verified
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Score raw text with a trained model.
"""
from collections import namedtuple
import logging
from multiprocessing import Pool
import sys
import os
import random
import numpy as np
import sacrebleu
import torch
from fairseq import checkpoint_utils, options, utils
logger = logging.getLogger("fairseq_cli.drnmt_rerank")
logger.setLevel(logging.INFO)
Batch = namedtuple("Batch", "ids src_tokens src_lengths")
pool_init_variables = {}
def init_loaded_scores(mt_scores, model_scores, hyp, ref):
global pool_init_variables
pool_init_variables["mt_scores"] = mt_scores
pool_init_variables["model_scores"] = model_scores
pool_init_variables["hyp"] = hyp
pool_init_variables["ref"] = ref
def parse_fairseq_gen(filename, task):
source = {}
hypos = {}
scores = {}
with open(filename, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line.startswith("S-"): # source
uid, text = line.split("\t", 1)
uid = int(uid[2:])
source[uid] = text
elif line.startswith("D-"): # hypo
uid, score, text = line.split("\t", 2)
uid = int(uid[2:])
if uid not in hypos:
hypos[uid] = []
scores[uid] = []
hypos[uid].append(text)
scores[uid].append(float(score))
else:
continue
source_out = [source[i] for i in range(len(hypos))]
hypos_out = [h for i in range(len(hypos)) for h in hypos[i]]
scores_out = [s for i in range(len(scores)) for s in scores[i]]
return source_out, hypos_out, scores_out
def read_target(filename):
with open(filename, "r", encoding="utf-8") as f:
output = [line.strip() for line in f]
return output
def make_batches(args, src, hyp, task, max_positions, encode_fn):
assert len(src) * args.beam == len(
hyp
), f"Expect {len(src) * args.beam} hypotheses for {len(src)} source sentences with beam size {args.beam}. Got {len(hyp)} hypotheses intead."
hyp_encode = [
task.source_dictionary.encode_line(encode_fn(h), add_if_not_exist=False).long()
for h in hyp
]
if task.cfg.include_src:
src_encode = [
task.source_dictionary.encode_line(
encode_fn(s), add_if_not_exist=False
).long()
for s in src
]
tokens = [(src_encode[i // args.beam], h) for i, h in enumerate(hyp_encode)]
lengths = [(t1.numel(), t2.numel()) for t1, t2 in tokens]
else:
tokens = [(h,) for h in hyp_encode]
lengths = [(h.numel(),) for h in hyp_encode]
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(tokens, lengths),
max_tokens=args.max_tokens,
max_sentences=args.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
yield Batch(
ids=batch["id"],
src_tokens=batch["net_input"]["src_tokens"],
src_lengths=batch["net_input"]["src_lengths"],
)
def decode_rerank_scores(args):
if args.max_tokens is None and args.batch_size is None:
args.batch_size = 1
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load ensemble
logger.info("loading model(s) from {}".format(args.path))
models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task(
[args.path], arg_overrides=eval(args.model_overrides),
)
for model in models:
if args.fp16:
model.half()
if use_cuda:
model.cuda()
# Initialize generator
generator = task.build_generator(args)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(args)
bpe = task.build_bpe(args)
def encode_fn(x):
if tokenizer is not None:
x = tokenizer.encode(x)
if bpe is not None:
x = bpe.encode(x)
return x
max_positions = utils.resolve_max_positions(
task.max_positions(), *[model.max_positions() for model in models]
)
src, hyp, mt_scores = parse_fairseq_gen(args.in_text, task)
model_scores = {}
logger.info("decode reranker score")
for batch in make_batches(args, src, hyp, task, max_positions, encode_fn):
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
if use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
sample = {
"net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths},
}
scores = task.inference_step(generator, models, sample)
for id, sc in zip(batch.ids.tolist(), scores.tolist()):
model_scores[id] = sc[0]
model_scores = [model_scores[i] for i in range(len(model_scores))]
return src, hyp, mt_scores, model_scores
def get_score(mt_s, md_s, w1, lp, tgt_len):
return mt_s / (tgt_len ** lp) * w1 + md_s
def get_best_hyps(mt_scores, md_scores, hypos, fw_weight, lenpen, beam):
assert len(mt_scores) == len(md_scores) and len(mt_scores) == len(hypos)
hypo_scores = []
best_hypos = []
best_scores = []
offset = 0
for i in range(len(hypos)):
tgt_len = len(hypos[i].split())
hypo_scores.append(
get_score(mt_scores[i], md_scores[i], fw_weight, lenpen, tgt_len)
)
if (i + 1) % beam == 0:
max_i = np.argmax(hypo_scores)
best_hypos.append(hypos[offset + max_i])
best_scores.append(hypo_scores[max_i])
hypo_scores = []
offset += beam
return best_hypos, best_scores
def eval_metric(args, hypos, ref):
if args.metric == "bleu":
score = sacrebleu.corpus_bleu(hypos, [ref]).score
else:
score = sacrebleu.corpus_ter(hypos, [ref]).score
return score
def score_target_hypo(args, fw_weight, lp):
mt_scores = pool_init_variables["mt_scores"]
model_scores = pool_init_variables["model_scores"]
hyp = pool_init_variables["hyp"]
ref = pool_init_variables["ref"]
best_hypos, _ = get_best_hyps(
mt_scores, model_scores, hyp, fw_weight, lp, args.beam
)
rerank_eval = None
if ref:
rerank_eval = eval_metric(args, best_hypos, ref)
print(f"fw_weight {fw_weight}, lenpen {lp}, eval {rerank_eval}")
return rerank_eval
def print_result(best_scores, best_hypos, output_file):
for i, (s, h) in enumerate(zip(best_scores, best_hypos)):
print(f"{i}\t{s}\t{h}", file=output_file)
def main(args):
utils.import_user_module(args)
src, hyp, mt_scores, model_scores = decode_rerank_scores(args)
assert (
not args.tune or args.target_text is not None
), "--target-text has to be set when tuning weights"
if args.target_text:
ref = read_target(args.target_text)
assert len(src) == len(
ref
), f"different numbers of source and target sentences ({len(src)} vs. {len(ref)})"
orig_best_hypos = [hyp[i] for i in range(0, len(hyp), args.beam)]
orig_eval = eval_metric(args, orig_best_hypos, ref)
if args.tune:
logger.info("tune weights for reranking")
random_params = np.array(
[
[
random.uniform(
args.lower_bound_fw_weight, args.upper_bound_fw_weight
),
random.uniform(args.lower_bound_lenpen, args.upper_bound_lenpen),
]
for k in range(args.num_trials)
]
)
logger.info("launching pool")
with Pool(
32,
initializer=init_loaded_scores,
initargs=(mt_scores, model_scores, hyp, ref),
) as p:
rerank_scores = p.starmap(
score_target_hypo,
[
(args, random_params[i][0], random_params[i][1],)
for i in range(args.num_trials)
],
)
if args.metric == "bleu":
best_index = np.argmax(rerank_scores)
else:
best_index = np.argmin(rerank_scores)
best_fw_weight = random_params[best_index][0]
best_lenpen = random_params[best_index][1]
else:
assert (
args.lenpen is not None and args.fw_weight is not None
), "--lenpen and --fw-weight should be set"
best_fw_weight, best_lenpen = args.fw_weight, args.lenpen
best_hypos, best_scores = get_best_hyps(
mt_scores, model_scores, hyp, best_fw_weight, best_lenpen, args.beam
)
if args.results_path is not None:
os.makedirs(args.results_path, exist_ok=True)
output_path = os.path.join(
args.results_path, "generate-{}.txt".format(args.gen_subset),
)
with open(output_path, "w", buffering=1, encoding="utf-8") as o:
print_result(best_scores, best_hypos, o)
else:
print_result(best_scores, best_hypos, sys.stdout)
if args.target_text:
rerank_eval = eval_metric(args, best_hypos, ref)
print(f"before reranking, {args.metric.upper()}:", orig_eval)
print(
f"after reranking with fw_weight={best_fw_weight}, lenpen={best_lenpen}, {args.metric.upper()}:",
rerank_eval,
)
def cli_main():
parser = options.get_generation_parser(interactive=True)
parser.add_argument(
"--in-text",
default=None,
required=True,
help="text from fairseq-interactive output, containing source sentences and hypotheses",
)
parser.add_argument("--target-text", default=None, help="reference text")
parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu")
parser.add_argument(
"--tune",
action="store_true",
help="if set, tune weights on fw scores and lenpen instead of applying fixed weights for reranking",
)
parser.add_argument(
"--lower-bound-fw-weight",
default=0.0,
type=float,
help="lower bound of search space",
)
parser.add_argument(
"--upper-bound-fw-weight",
default=3,
type=float,
help="upper bound of search space",
)
parser.add_argument(
"--lower-bound-lenpen",
default=0.0,
type=float,
help="lower bound of search space",
)
parser.add_argument(
"--upper-bound-lenpen",
default=3,
type=float,
help="upper bound of search space",
)
parser.add_argument(
"--fw-weight", type=float, default=None, help="weight on the fw model score"
)
parser.add_argument(
"--num-trials",
default=1000,
type=int,
help="number of trials to do for random search",
)
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()