from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import os import torch from torch import nn from torch.nn.modules.loss import _Loss import torch.nn.functional as F from transformers import BertConfig from transformers.modeling_bert import \ BertPreTrainedModel, BertSelfOutput, BertIntermediate, BertOutput, BertPredictionHeadTransform from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from s2s_ft.config import BertForSeq2SeqConfig from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert logger = logging.getLogger(__name__) BertLayerNorm = torch.nn.LayerNorm UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D", 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D" } MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D", } LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/pytorch_model.bin', 'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/pytorch_model.bin' } LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json', 'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json' } class LayoutlmConfig(BertConfig): pretrained_config_archive_map = LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, **kwargs): super().__init__(**kwargs) self.max_2d_position_embeddings = max_2d_position_embeddings class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertForSeq2SeqConfig supported_convert_pretrained_model_archive_map = { "bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP, "roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, "minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, "layoutlm": LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP, } base_model_prefix = "bert_for_seq2seq" pretrained_model_archive_map = { **ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **BERT_PRETRAINED_MODEL_ARCHIVE_MAP, **UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, **MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, **LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP, } def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None, *model_args, **kwargs): model_type = kwargs.pop('model_type', None) if model_type is not None and "state_dict" not in kwargs: if model_type in cls.supported_convert_pretrained_model_archive_map: pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type] if pretrained_model_name_or_path in pretrained_model_archive_map: state_dict = get_checkpoint_from_transformer_cache( archive_file=pretrained_model_archive_map[pretrained_model_name_or_path], pretrained_model_name_or_path=pretrained_model_name_or_path, pretrained_model_archive_map=pretrained_model_archive_map, cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None), proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None), ) state_dict = state_dict_convert[model_type](state_dict) kwargs["state_dict"] = state_dict elif os.path.isfile(pretrained_model_name_or_path): kwargs["state_dict"] = torch.load(pretrained_model_name_or_path, map_location='cpu') if kwargs["state_dict"] is None: logger.info("s2s-ft does't support the model !") raise NotImplementedError() config = kwargs["config"] state_dict = kwargs["state_dict"] # initialize new position embeddings (From Microsoft/UniLM) _k = 'bert.embeddings.position_embeddings.weight' if _k in state_dict: if config.max_position_embeddings > state_dict[_k].shape[0]: logger.info("Resize > position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_position_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True) new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range) max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size shift = 0 while shift < max_range: delta = min(old_vocab_size, max_range - shift) new_position_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :] logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta)) shift += delta state_dict[_k] = new_position_embedding.data del new_position_embedding elif config.max_position_embeddings < state_dict[_k].shape[0]: logger.info("Resize < position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_position_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True) new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range) new_position_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :]) state_dict[_k] = new_position_embedding.data del new_position_embedding return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutlmEmbeddings(nn.Module): def __init__(self, config): super(LayoutlmEmbeddings, self).__init__() self.only_layout_flag = config.layoutlm_only_layout if not config.layoutlm_only_layout: self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) else: self.word_embeddings = None self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, input_ids, bbox, token_type_ids=None, position_ids=None, inputs_embeds=None, ): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) h_position_embeddings = self.h_position_embeddings( bbox[:, :, 3] - bbox[:, :, 1] ) w_position_embeddings = self.w_position_embeddings( bbox[:, :, 2] - bbox[:, :, 0] ) position_embeddings = self.position_embeddings(position_ids) embeddings = ( left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + position_embeddings # + token_type_embeddings ) if not self.only_layout_flag: words_embeddings = self.word_embeddings(input_ids) embeddings = embeddings + words_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def multi_head_attention(self, query, key, value, attention_mask): query_layer = self.transpose_for_scores(query) key_layer = self.transpose_for_scores(key) value_layer = self.transpose_for_scores(value) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return (context_layer, attention_probs) if self.output_attentions else (context_layer,) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): mixed_query_layer = self.query(hidden_states) if split_lengths: assert not self.output_attentions # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if split_lengths: query_parts = torch.split(mixed_query_layer, split_lengths, dim=1) key_parts = torch.split(mixed_key_layer, split_lengths, dim=1) value_parts = torch.split(mixed_value_layer, split_lengths, dim=1) key = None value = None outputs = [] sum_length = 0 for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths): key = _key if key is None else torch.cat((key, _key), dim=1) value = _value if value is None else torch.cat((value, _value), dim=1) sum_length += part_length outputs.append(self.multi_head_attention( query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length] )[0]) outputs = (torch.cat(outputs, dim=1), ) else: outputs = self.multi_head_attention( mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask) return outputs class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): self_outputs = self.self( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask=None, split_lengths=None): self_attention_outputs = self.attention( hidden_states, attention_mask, split_lengths=split_lengths) attention_output = self_attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + self_attention_outputs[1:] return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask=None, split_lengths=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, split_lengths=split_lengths) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class BertModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here if return_emb: outputs += (embedding_output,) return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LayoutlmModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(LayoutlmModel, self).__init__(config) self.config = config self.embeddings = LayoutlmEmbeddings(config) self.encoder = BertEncoder(config) def forward(self, input_ids=None, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # embedding_output = self.embeddings( # input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) embedding_output = self.embeddings( input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here if return_emb: outputs += (embedding_output,) return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_size > 0 smoothing_value = label_smoothing / (tgt_size - 2) one_hot = torch.full((tgt_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_size = tgt_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_size) target = target.view(-1) model_prob = self.one_hot.float().repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) class LayoutlmSPLMPredictionHead(nn.Module): def __init__(self, config, src_len): super(LayoutlmSPLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) self.bias = nn.Parameter(torch.zeros(src_len)) def forward(self, hidden_states, src_emb): hidden_states = self.transform(hidden_states) hidden_states = torch.einsum('btf,bsf->bts', hidden_states, src_emb) + self.bias # hidden_states = F.linear(hidden_states, weight=src_emb, bias=self.bias) return hidden_states class LayoutlmSPOnlyMLMHead(nn.Module): def __init__(self, config, src_len): super(LayoutlmSPOnlyMLMHead, self).__init__() self.predictions = LayoutlmSPLMPredictionHead(config, src_len=src_len) def forward(self, sequence_output, src_emb): prediction_scores = self.predictions(sequence_output, src_emb=src_emb) return prediction_scores class LayoutlmForSequenceToSequence(BertPreTrainedForSeq2SeqModel): def __init__(self, config): super(LayoutlmForSequenceToSequence, self).__init__(config) if config.base_model_type == 'layoutlm': self.bert = LayoutlmModel(config) else: self.bert = BertModel(config) self.cls = LayoutlmSPOnlyMLMHead(config, src_len=config.max_source_length) self.init_weights() self.log_softmax = nn.LogSoftmax() # setattr(config, 'label_smoothing', 0.1) self.source_type_id = config.source_type_id self.target_type_id = config.target_type_id if config.label_smoothing > 0: self.crit_mask_lm_smoothed = LabelSmoothingLoss( config.label_smoothing, config.max_source_length, ignore_index=0, reduction='none') self.crit_mask_lm = None else: self.crit_mask_lm_smoothed = None self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none', ignore_index=0) @staticmethod def create_mask_and_position_ids(num_tokens, max_len, offset=None): base_position_matrix = torch.arange( 0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1) mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens) if offset is not None: base_position_matrix = base_position_matrix + offset.view(-1, 1) position_ids = base_position_matrix * mask return mask, position_ids @staticmethod def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids): weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1) from_weight = weight.unsqueeze(-1) to_weight = weight.unsqueeze(1) true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1) true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight) pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight) pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight)) return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask) def forward(self, source_idxys, target_idxys, target_index, pseudo_idxys, num_source_tokens, num_target_tokens, target_span_ids=None): source_len = source_idxys.size(1) target_len = target_idxys.size(1) pseudo_len = pseudo_idxys.size(1) assert target_len == pseudo_len assert source_len > 0 and target_len > 0 split_lengths = (source_len, target_len, pseudo_len) if self.config.base_model_type == 'layoutlm': source_xys = source_idxys[:, :, 1:] target_xys = target_idxys[:, :, 1:] pseudo_xys = pseudo_idxys[:, :, 1:] input_xys = torch.cat((source_xys, target_xys, pseudo_xys), dim=1) source_ids = source_idxys[:, :, 0] target_ids = target_idxys[:, :, 0] pseudo_ids = pseudo_idxys[:, :, 0] else: source_ids = source_idxys target_ids = target_idxys pseudo_ids = pseudo_idxys input_xys = None input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1) token_type_ids = torch.cat( (torch.ones_like(source_ids) * self.source_type_id, torch.ones_like(target_ids) * self.target_type_id, torch.ones_like(pseudo_ids) * self.target_type_id), dim=1) source_mask, source_position_ids = \ self.create_mask_and_position_ids(num_source_tokens, source_len) target_mask, target_position_ids = \ self.create_mask_and_position_ids(num_target_tokens, target_len, offset=num_source_tokens) position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1) if target_span_ids is None: target_span_ids = target_position_ids attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids) if self.config.base_model_type == 'layoutlm': outputs = self.bert( input_ids, input_xys, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths, return_emb=True) else: outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths, return_emb=True) sequence_output = outputs[0] pseudo_sequence_output = sequence_output[:, source_len + target_len:, ] sequence_embedding = outputs[-1] source_embedding = sequence_embedding[:, :source_len, :] def loss_mask_and_normalize(loss, mask): mask = mask.type_as(loss) loss = loss * mask denominator = torch.sum(mask) + 1e-5 return (loss / denominator).sum() # TODO: do we need to mask the impossible pos with the real input length prediction_scores_masked = self.cls(pseudo_sequence_output, source_embedding) if self.crit_mask_lm_smoothed: masked_lm_loss = self.crit_mask_lm_smoothed( F.log_softmax(prediction_scores_masked.float(), dim=-1), target_index) else: masked_lm_loss = self.crit_mask_lm( prediction_scores_masked.transpose(1, 2).float(), target_index) pseudo_lm_loss = loss_mask_and_normalize( masked_lm_loss.float(), target_mask) return pseudo_lm_loss