# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import os import logging import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.vision_transformer import VisionTransformer, _cfg from timm.models.vision_transformer import Attention, Block from timm.models.registry import register_model from timm.models.layers import trunc_normal_ logger = logging.getLogger(__name__) class Fp16FixedAttention(Attention): def cogview_attn(self, attention_scores, alpha=32): ''' https://arxiv.org/pdf/2105.13290.pdf Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores) Seems the new attention_probs will result in a slower speed and a little bias Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison The smaller atol (e.g., 1e-08), the better. ''' scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) # max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale # attn = attn.softmax(dim=-1).type_as(x) attn = self.cogview_attn(attn).type_as(x) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Fp16FixedBlock(Block): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path, act_layer=act_layer, norm_layer=norm_layer) self.attn = Fp16FixedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) class AdaptedVisionTransformer(VisionTransformer): def __init__(self, *args, **kwargs): self.ape = kwargs.pop('ape', 0) self.mask_ratio = kwargs.pop('mask_ratio', 0.0) self.patch_size = kwargs.get('patch_size') self.fp16fixed = kwargs.pop('fp16fixed', False) weight_init = kwargs.get('weight_init', '') super().__init__(*args, **kwargs) if self.ape: self.pos_embed = nn.Parameter(torch.zeros(1, self.ape + self.num_tokens, self.embed_dim)) if self.fp16fixed: # img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, # num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, # drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, # act_layer=None, weight_init='' embed_dim = kwargs.get('embed_dim', 768) num_heads = kwargs.get('num_heads', 12) mlp_ratio = kwargs.get('mlp_ratio', 4.) qkv_bias = kwargs.get('qkv_bias', True) drop_rate = kwargs.get('drop_rate', 0.) attn_drop_rate = kwargs.get('attn_drop_rate', 0.) drop_path_rate = kwargs.get('drop_path_rate', 0.) depth = kwargs.get('depth', 12) norm_layer = kwargs.get('norm_layer', partial(nn.LayerNorm, eps=1e-6)) act_layer = kwargs.get('act_layer', nn.GELU) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential(*[ Fp16FixedBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) for i in range(depth)]) self.init_weights(weight_init) def forward_features(self, x): _, _, H, W = x.shape Wh = H // self.patch_size Ww = W // self.patch_size x = self.patch_embed(x) if self.mask_ratio != 0: probability_matrix = torch.full(x.shape[:2], self.mask_ratio) masked_indices = torch.bernoulli(probability_matrix).bool() x[masked_indices] = 0 cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.dist_token is None: x = torch.cat((cls_token, x), dim=1) else: x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) if self.ape: pos_embed_patch_num = int(self.pos_embed.size(1) ** 0.5) offset = self.num_tokens adapt_pos_embed = self.pos_embed[:, offset:, :].view(self.pos_embed.shape[0], pos_embed_patch_num, pos_embed_patch_num, self.pos_embed.shape[-1]) # B 24 24 768 adapt_pos_embed = adapt_pos_embed.permute(0, 3, 1, 2) pos_embed = F.interpolate(adapt_pos_embed, size=(Wh, Ww), mode='bicubic') pos_embed = pos_embed.flatten(2).transpose(1, 2) # B Wh*Ww C pos_embed = torch.cat((pos_embed, self.pos_embed[:, :offset, :]), dim=1) else: pos_embed = self.pos_embed input_embedding = x + pos_embed x = self.pos_drop(input_embedding) x = self.blocks(x) x = self.norm(x) return x, input_embedding @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_distilled_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=384, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", map_location="cpu", check_hash=True ) # adapt 224 model to 384 model_seq_len = model.state_dict()['pos_embed'].shape[1] ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) if not model.ape: if model_seq_len <= ckpt_seq_len: checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] else: t = model.state_dict()['pos_embed'] t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] checkpoint['model']['pos_embed'] = t model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_custom_size(pretrained=False, img_size=384, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", map_location="cpu", check_hash=True ) # checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :502, :] # ape torch.Size([1, 578, 768]) from checkpoint, the shape in current model is torch.Size([1, 1026, 768]). model_seq_len = model.state_dict()['pos_embed'].shape[1] ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) if not model.ape: if model_seq_len <= ckpt_seq_len: checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] else: t = model.state_dict()['pos_embed'] t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] checkpoint['model']['pos_embed'] = t model.load_state_dict(checkpoint["model"]) return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model