Spaces:
Running
Running
File size: 5,213 Bytes
c59c099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.nn.utils.spectral_norm import spectral_norm
class BlurFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
return grad_input
@staticmethod
def backward(ctx, gradgrad_output):
kernel, _ = ctx.saved_tensors
grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
return grad_input, None, None
class BlurFunction(Function):
@staticmethod
def forward(ctx, x, kernel, kernel_flip):
ctx.save_for_backward(kernel, kernel_flip)
output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
return output
@staticmethod
def backward(ctx, grad_output):
kernel, kernel_flip = ctx.saved_tensors
grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
return grad_input, None, None
blur = BlurFunction.apply
class Blur(nn.Module):
def __init__(self, channel):
super().__init__()
kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
kernel = kernel.view(1, 1, 3, 3)
kernel = kernel / kernel.sum()
kernel_flip = torch.flip(kernel, [2, 3])
self.kernel = kernel.repeat(channel, 1, 1, 1)
self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)
def forward(self, x):
return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
n, c = size[:2]
feat_var = feat.view(n, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(n, c, 1, 1)
feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def AttentionBlock(in_channel):
return nn.Sequential(
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))
def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
"""Conv block used in MSDilationBlock."""
return nn.Sequential(
spectral_norm(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=((kernel_size - 1) // 2) * dilation,
bias=bias)),
nn.LeakyReLU(0.2),
spectral_norm(
nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=((kernel_size - 1) // 2) * dilation,
bias=bias)),
)
class MSDilationBlock(nn.Module):
"""Multi-scale dilation block."""
def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
super(MSDilationBlock, self).__init__()
self.conv_blocks = nn.ModuleList()
for i in range(4):
self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
self.conv_fusion = spectral_norm(
nn.Conv2d(
in_channels * 4,
in_channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=bias))
def forward(self, x):
out = []
for i in range(4):
out.append(self.conv_blocks[i](x))
out = torch.cat(out, 1)
out = self.conv_fusion(out) + x
return out
class UpResBlock(nn.Module):
def __init__(self, in_channel):
super(UpResBlock, self).__init__()
self.body = nn.Sequential(
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
)
def forward(self, x):
out = x + self.body(x)
return out
|