Spaces:
Runtime error
Runtime error
File size: 25,186 Bytes
8e542dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import cv2
import numpy as np
import os
import torch
from torchvision.transforms.functional import normalize
from facelib.detection import init_detection_model
from facelib.parsing import init_parsing_model
from facelib.utils.misc import img2tensor, imwrite, is_gray, bgr2gray, adain_npy
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import get_device
dlib_model_url = {
'face_detector': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/mmod_human_face_detector-4cb19393.dat',
'shape_predictor_5': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/shape_predictor_5_face_landmarks-c4b1e980.dat'
}
def get_largest_face(det_faces, h, w):
def get_location(val, length):
if val < 0:
return 0
elif val > length:
return length
else:
return val
face_areas = []
for det_face in det_faces:
left = get_location(det_face[0], w)
right = get_location(det_face[2], w)
top = get_location(det_face[1], h)
bottom = get_location(det_face[3], h)
face_area = (right - left) * (bottom - top)
face_areas.append(face_area)
largest_idx = face_areas.index(max(face_areas))
return det_faces[largest_idx], largest_idx
def get_center_face(det_faces, h=0, w=0, center=None):
if center is not None:
center = np.array(center)
else:
center = np.array([w / 2, h / 2])
center_dist = []
for det_face in det_faces:
face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
dist = np.linalg.norm(face_center - center)
center_dist.append(dist)
center_idx = center_dist.index(min(center_dist))
return det_faces[center_idx], center_idx
class FaceRestoreHelper(object):
"""Helper for the face restoration pipeline (base class)."""
def __init__(self,
upscale_factor,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
template_3points=False,
pad_blur=False,
use_parse=False,
device=None):
self.template_3points = template_3points # improve robustness
self.upscale_factor = int(upscale_factor)
# the cropped face ratio based on the square face
self.crop_ratio = crop_ratio # (h, w)
assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
self.det_model = det_model
if self.det_model == 'dlib':
# standard 5 landmarks for FFHQ faces with 1024 x 1024
self.face_template = np.array([[686.77227723, 488.62376238], [586.77227723, 493.59405941],
[337.91089109, 488.38613861], [437.95049505, 493.51485149],
[513.58415842, 678.5049505]])
self.face_template = self.face_template / (1024 // face_size)
elif self.template_3points:
self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
else:
# standard 5 landmarks for FFHQ faces with 512 x 512
# facexlib
self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
[201.26117, 371.41043], [313.08905, 371.15118]])
# dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
# self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
# [198.22603, 372.82502], [313.91018, 372.75659]])
self.face_template = self.face_template * (face_size / 512.0)
if self.crop_ratio[0] > 1:
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
if self.crop_ratio[1] > 1:
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
self.save_ext = save_ext
self.pad_blur = pad_blur
if self.pad_blur is True:
self.template_3points = False
self.all_landmarks_5 = []
self.det_faces = []
self.affine_matrices = []
self.inverse_affine_matrices = []
self.cropped_faces = []
self.restored_faces = []
self.pad_input_imgs = []
if device is None:
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.device = get_device()
else:
self.device = device
# init face detection model
if self.det_model == 'dlib':
self.face_detector, self.shape_predictor_5 = self.init_dlib(dlib_model_url['face_detector'], dlib_model_url['shape_predictor_5'])
else:
self.face_detector = init_detection_model(det_model, half=False, device=self.device)
# init face parsing model
self.use_parse = use_parse
self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
def set_upscale_factor(self, upscale_factor):
self.upscale_factor = upscale_factor
def read_image(self, img):
"""img can be image path or cv2 loaded image."""
# self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
if isinstance(img, str):
img = cv2.imread(img)
if np.max(img) > 256: # 16-bit image
img = img / 65535 * 255
if len(img.shape) == 2: # gray image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 4: # BGRA image with alpha channel
img = img[:, :, 0:3]
self.input_img = img
self.is_gray = is_gray(img, threshold=10)
if self.is_gray:
print('Grayscale input: True')
if min(self.input_img.shape[:2])<512:
f = 512.0/min(self.input_img.shape[:2])
self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
def init_dlib(self, detection_path, landmark5_path):
"""Initialize the dlib detectors and predictors."""
try:
import dlib
except ImportError:
print('Please install dlib by running:' 'conda install -c conda-forge dlib')
detection_path = load_file_from_url(url=detection_path, model_dir='weights/dlib', progress=True, file_name=None)
landmark5_path = load_file_from_url(url=landmark5_path, model_dir='weights/dlib', progress=True, file_name=None)
face_detector = dlib.cnn_face_detection_model_v1(detection_path)
shape_predictor_5 = dlib.shape_predictor(landmark5_path)
return face_detector, shape_predictor_5
def get_face_landmarks_5_dlib(self,
only_keep_largest=False,
scale=1):
det_faces = self.face_detector(self.input_img, scale)
if len(det_faces) == 0:
print('No face detected. Try to increase upsample_num_times.')
return 0
else:
if only_keep_largest:
print('Detect several faces and only keep the largest.')
face_areas = []
for i in range(len(det_faces)):
face_area = (det_faces[i].rect.right() - det_faces[i].rect.left()) * (
det_faces[i].rect.bottom() - det_faces[i].rect.top())
face_areas.append(face_area)
largest_idx = face_areas.index(max(face_areas))
self.det_faces = [det_faces[largest_idx]]
else:
self.det_faces = det_faces
if len(self.det_faces) == 0:
return 0
for face in self.det_faces:
shape = self.shape_predictor_5(self.input_img, face.rect)
landmark = np.array([[part.x, part.y] for part in shape.parts()])
self.all_landmarks_5.append(landmark)
return len(self.all_landmarks_5)
def get_face_landmarks_5(self,
only_keep_largest=False,
only_center_face=False,
resize=None,
blur_ratio=0.01,
eye_dist_threshold=None):
if self.det_model == 'dlib':
return self.get_face_landmarks_5_dlib(only_keep_largest)
if resize is None:
scale = 1
input_img = self.input_img
else:
h, w = self.input_img.shape[0:2]
scale = resize / min(h, w)
scale = max(1, scale) # always scale up
h, w = int(h * scale), int(w * scale)
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
with torch.no_grad():
bboxes = self.face_detector.detect_faces(input_img)
if bboxes is None or bboxes.shape[0] == 0:
return 0
else:
bboxes = bboxes / scale
for bbox in bboxes:
# remove faces with too small eye distance: side faces or too small faces
eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
continue
if self.template_3points:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
else:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
self.all_landmarks_5.append(landmark)
self.det_faces.append(bbox[0:5])
if len(self.det_faces) == 0:
return 0
if only_keep_largest:
h, w, _ = self.input_img.shape
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
elif only_center_face:
h, w, _ = self.input_img.shape
self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
# pad blurry images
if self.pad_blur:
self.pad_input_imgs = []
for landmarks in self.all_landmarks_5:
# get landmarks
eye_left = landmarks[0, :]
eye_right = landmarks[1, :]
eye_avg = (eye_left + eye_right) * 0.5
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1.5
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
border = max(int(np.rint(qsize * 0.1)), 3)
# get pad
# pad: (width_left, height_top, width_right, height_bottom)
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = [
max(-pad[0] + border, 1),
max(-pad[1] + border, 1),
max(pad[2] - self.input_img.shape[0] + border, 1),
max(pad[3] - self.input_img.shape[1] + border, 1)
]
if max(pad) > 1:
# pad image
pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
# modify landmark coords
landmarks[:, 0] += pad[0]
landmarks[:, 1] += pad[1]
# blur pad images
h, w, _ = pad_img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * blur_ratio)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
# blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
pad_img = pad_img.astype('float32')
pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
self.pad_input_imgs.append(pad_img)
else:
self.pad_input_imgs.append(np.copy(self.input_img))
return len(self.all_landmarks_5)
def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
"""Align and warp faces with face template.
"""
if self.pad_blur:
assert len(self.pad_input_imgs) == len(
self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
for idx, landmark in enumerate(self.all_landmarks_5):
# use 5 landmarks to get affine matrix
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
self.affine_matrices.append(affine_matrix)
# warp and crop faces
if border_mode == 'constant':
border_mode = cv2.BORDER_CONSTANT
elif border_mode == 'reflect101':
border_mode = cv2.BORDER_REFLECT101
elif border_mode == 'reflect':
border_mode = cv2.BORDER_REFLECT
if self.pad_blur:
input_img = self.pad_input_imgs[idx]
else:
input_img = self.input_img
cropped_face = cv2.warpAffine(
input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
self.cropped_faces.append(cropped_face)
# save the cropped face
if save_cropped_path is not None:
path = os.path.splitext(save_cropped_path)[0]
save_path = f'{path}_{idx:02d}.{self.save_ext}'
imwrite(cropped_face, save_path)
def get_inverse_affine(self, save_inverse_affine_path=None):
"""Get inverse affine matrix."""
for idx, affine_matrix in enumerate(self.affine_matrices):
inverse_affine = cv2.invertAffineTransform(affine_matrix)
inverse_affine *= self.upscale_factor
self.inverse_affine_matrices.append(inverse_affine)
# save inverse affine matrices
if save_inverse_affine_path is not None:
path, _ = os.path.splitext(save_inverse_affine_path)
save_path = f'{path}_{idx:02d}.pth'
torch.save(inverse_affine, save_path)
def add_restored_face(self, restored_face, input_face=None):
if self.is_gray:
restored_face = bgr2gray(restored_face) # convert img into grayscale
if input_face is not None:
restored_face = adain_npy(restored_face, input_face) # transfer the color
self.restored_faces.append(restored_face)
def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
h, w, _ = self.input_img.shape
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
if upsample_img is None:
# simply resize the background
# upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
else:
upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
assert len(self.restored_faces) == len(
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
inv_mask_borders = []
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
if face_upsampler is not None:
restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
inverse_affine /= self.upscale_factor
inverse_affine[:, 2] *= self.upscale_factor
face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
else:
# Add an offset to inverse affine matrix, for more precise back alignment
if self.upscale_factor > 1:
extra_offset = 0.5 * self.upscale_factor
else:
extra_offset = 0
inverse_affine[:, 2] += extra_offset
face_size = self.face_size
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
# if draw_box or not self.use_parse: # use square parse maps
# mask = np.ones(face_size, dtype=np.float32)
# inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# # remove the black borders
# inv_mask_erosion = cv2.erode(
# inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
# pasted_face = inv_mask_erosion[:, :, None] * inv_restored
# total_face_area = np.sum(inv_mask_erosion) # // 3
# # add border
# if draw_box:
# h, w = face_size
# mask_border = np.ones((h, w, 3), dtype=np.float32)
# border = int(1400/np.sqrt(total_face_area))
# mask_border[border:h-border, border:w-border,:] = 0
# inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
# inv_mask_borders.append(inv_mask_border)
# if not self.use_parse:
# # compute the fusion edge based on the area of face
# w_edge = int(total_face_area**0.5) // 20
# erosion_radius = w_edge * 2
# inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
# blur_size = w_edge * 2
# inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
# if len(upsample_img.shape) == 2: # upsample_img is gray image
# upsample_img = upsample_img[:, :, None]
# inv_soft_mask = inv_soft_mask[:, :, None]
# always use square mask
mask = np.ones(face_size, dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# remove the black borders
inv_mask_erosion = cv2.erode(
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
total_face_area = np.sum(inv_mask_erosion) # // 3
# add border
if draw_box:
h, w = face_size
mask_border = np.ones((h, w, 3), dtype=np.float32)
border = int(1400/np.sqrt(total_face_area))
mask_border[border:h-border, border:w-border,:] = 0
inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
inv_mask_borders.append(inv_mask_border)
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
if len(upsample_img.shape) == 2: # upsample_img is gray image
upsample_img = upsample_img[:, :, None]
inv_soft_mask = inv_soft_mask[:, :, None]
# parse mask
if self.use_parse:
# inference
face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
face_input = torch.unsqueeze(face_input, 0).to(self.device)
with torch.no_grad():
out = self.face_parse(face_input)[0]
out = out.argmax(dim=1).squeeze().cpu().numpy()
parse_mask = np.zeros(out.shape)
MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
for idx, color in enumerate(MASK_COLORMAP):
parse_mask[out == idx] = color
# blur the mask
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
# remove the black borders
thres = 10
parse_mask[:thres, :] = 0
parse_mask[-thres:, :] = 0
parse_mask[:, :thres] = 0
parse_mask[:, -thres:] = 0
parse_mask = parse_mask / 255.
parse_mask = cv2.resize(parse_mask, face_size)
parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
inv_soft_parse_mask = parse_mask[:, :, None]
# pasted_face = inv_restored
fuse_mask = (inv_soft_parse_mask<inv_soft_mask).astype('int')
inv_soft_mask = inv_soft_parse_mask*fuse_mask + inv_soft_mask*(1-fuse_mask)
if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
alpha = upsample_img[:, :, 3:]
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
upsample_img = np.concatenate((upsample_img, alpha), axis=2)
else:
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
if np.max(upsample_img) > 256: # 16-bit image
upsample_img = upsample_img.astype(np.uint16)
else:
upsample_img = upsample_img.astype(np.uint8)
# draw bounding box
if draw_box:
# upsample_input_img = cv2.resize(input_img, (w_up, h_up))
img_color = np.ones([*upsample_img.shape], dtype=np.float32)
img_color[:,:,0] = 0
img_color[:,:,1] = 255
img_color[:,:,2] = 0
for inv_mask_border in inv_mask_borders:
upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
# upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
if save_path is not None:
path = os.path.splitext(save_path)[0]
save_path = f'{path}.{self.save_ext}'
imwrite(upsample_img, save_path)
return upsample_img
def clean_all(self):
self.all_landmarks_5 = []
self.restored_faces = []
self.affine_matrices = []
self.cropped_faces = []
self.inverse_affine_matrices = []
self.det_faces = []
self.pad_input_imgs = [] |