Spaces:
Runtime error
Runtime error
# This file contains modules common to various models | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from facelib.detection.yolov5face.utils.datasets import letterbox | |
from facelib.detection.yolov5face.utils.general import ( | |
make_divisible, | |
non_max_suppression, | |
scale_coords, | |
xyxy2xywh, | |
) | |
def autopad(k, p=None): # kernel, padding | |
# Pad to 'same' | |
if p is None: | |
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |
return p | |
def channel_shuffle(x, groups): | |
batchsize, num_channels, height, width = x.data.size() | |
channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc") | |
# reshape | |
x = x.view(batchsize, groups, channels_per_group, height, width) | |
x = torch.transpose(x, 1, 2).contiguous() | |
# flatten | |
return x.view(batchsize, -1, height, width) | |
def DWConv(c1, c2, k=1, s=1, act=True): | |
# Depthwise convolution | |
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) | |
class Conv(nn.Module): | |
# Standard convolution | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |
self.bn = nn.BatchNorm2d(c2) | |
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def fuseforward(self, x): | |
return self.act(self.conv(x)) | |
class StemBlock(nn.Module): | |
def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True): | |
super().__init__() | |
self.stem_1 = Conv(c1, c2, k, s, p, g, act) | |
self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0) | |
self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1) | |
self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) | |
self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0) | |
def forward(self, x): | |
stem_1_out = self.stem_1(x) | |
stem_2a_out = self.stem_2a(stem_1_out) | |
stem_2b_out = self.stem_2b(stem_2a_out) | |
stem_2p_out = self.stem_2p(stem_1_out) | |
return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1)) | |
class Bottleneck(nn.Module): | |
# Standard bottleneck | |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_, c2, 3, 1, g=g) | |
self.add = shortcut and c1 == c2 | |
def forward(self, x): | |
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
class BottleneckCSP(nn.Module): | |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |
self.cv4 = Conv(2 * c_, c2, 1, 1) | |
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |
self.act = nn.LeakyReLU(0.1, inplace=True) | |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) | |
def forward(self, x): | |
y1 = self.cv3(self.m(self.cv1(x))) | |
y2 = self.cv2(x) | |
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) | |
class C3(nn.Module): | |
# CSP Bottleneck with 3 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c1, c_, 1, 1) | |
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) | |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) | |
def forward(self, x): | |
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) | |
class ShuffleV2Block(nn.Module): | |
def __init__(self, inp, oup, stride): | |
super().__init__() | |
if not 1 <= stride <= 3: | |
raise ValueError("illegal stride value") | |
self.stride = stride | |
branch_features = oup // 2 | |
if self.stride > 1: | |
self.branch1 = nn.Sequential( | |
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1), | |
nn.BatchNorm2d(inp), | |
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.BatchNorm2d(branch_features), | |
nn.SiLU(), | |
) | |
else: | |
self.branch1 = nn.Sequential() | |
self.branch2 = nn.Sequential( | |
nn.Conv2d( | |
inp if (self.stride > 1) else branch_features, | |
branch_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=False, | |
), | |
nn.BatchNorm2d(branch_features), | |
nn.SiLU(), | |
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1), | |
nn.BatchNorm2d(branch_features), | |
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.BatchNorm2d(branch_features), | |
nn.SiLU(), | |
) | |
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): | |
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) | |
def forward(self, x): | |
if self.stride == 1: | |
x1, x2 = x.chunk(2, dim=1) | |
out = torch.cat((x1, self.branch2(x2)), dim=1) | |
else: | |
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) | |
out = channel_shuffle(out, 2) | |
return out | |
class SPP(nn.Module): | |
# Spatial pyramid pooling layer used in YOLOv3-SPP | |
def __init__(self, c1, c2, k=(5, 9, 13)): | |
super().__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |
def forward(self, x): | |
x = self.cv1(x) | |
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |
class Focus(nn.Module): | |
# Focus wh information into c-space | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | |
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) | |
class Concat(nn.Module): | |
# Concatenate a list of tensors along dimension | |
def __init__(self, dimension=1): | |
super().__init__() | |
self.d = dimension | |
def forward(self, x): | |
return torch.cat(x, self.d) | |
class NMS(nn.Module): | |
# Non-Maximum Suppression (NMS) module | |
conf = 0.25 # confidence threshold | |
iou = 0.45 # IoU threshold | |
classes = None # (optional list) filter by class | |
def forward(self, x): | |
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) | |
class AutoShape(nn.Module): | |
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS | |
img_size = 640 # inference size (pixels) | |
conf = 0.25 # NMS confidence threshold | |
iou = 0.45 # NMS IoU threshold | |
classes = None # (optional list) filter by class | |
def __init__(self, model): | |
super().__init__() | |
self.model = model.eval() | |
def autoshape(self): | |
print("autoShape already enabled, skipping... ") # model already converted to model.autoshape() | |
return self | |
def forward(self, imgs, size=640, augment=False, profile=False): | |
# Inference from various sources. For height=720, width=1280, RGB images example inputs are: | |
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3) | |
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3) | |
# numpy: = np.zeros((720,1280,3)) # HWC | |
# torch: = torch.zeros(16,3,720,1280) # BCHW | |
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |
p = next(self.model.parameters()) # for device and type | |
if isinstance(imgs, torch.Tensor): # torch | |
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference | |
# Pre-process | |
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images | |
shape0, shape1 = [], [] # image and inference shapes | |
for i, im in enumerate(imgs): | |
im = np.array(im) # to numpy | |
if im.shape[0] < 5: # image in CHW | |
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) | |
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input | |
s = im.shape[:2] # HWC | |
shape0.append(s) # image shape | |
g = size / max(s) # gain | |
shape1.append([y * g for y in s]) | |
imgs[i] = im # update | |
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape | |
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad | |
x = np.stack(x, 0) if n > 1 else x[0][None] # stack | |
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW | |
x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32 | |
# Inference | |
with torch.no_grad(): | |
y = self.model(x, augment, profile)[0] # forward | |
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS | |
# Post-process | |
for i in range(n): | |
scale_coords(shape1, y[i][:, :4], shape0[i]) | |
return Detections(imgs, y, self.names) | |
class Detections: | |
# detections class for YOLOv5 inference results | |
def __init__(self, imgs, pred, names=None): | |
super().__init__() | |
d = pred[0].device # device | |
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations | |
self.imgs = imgs # list of images as numpy arrays | |
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |
self.names = names # class names | |
self.xyxy = pred # xyxy pixels | |
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |
self.n = len(self.pred) | |
def __len__(self): | |
return self.n | |
def tolist(self): | |
# return a list of Detections objects, i.e. 'for result in results.tolist():' | |
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] | |
for d in x: | |
for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]: | |
setattr(d, k, getattr(d, k)[0]) # pop out of list | |
return x | |