Update app.py
Browse files
app.py
CHANGED
@@ -1,289 +1,289 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
from openai import AzureOpenAI
|
4 |
-
import faiss
|
5 |
-
import numpy as np
|
6 |
-
import json
|
7 |
-
import time
|
8 |
-
import re
|
9 |
-
import tiktoken
|
10 |
-
import os
|
11 |
-
from IPython.display import HTML
|
12 |
-
|
13 |
-
def arabic_print(text, colour="blue"):
|
14 |
-
"""
|
15 |
-
Displays Arabic text with proper RTL and right alignment in Jupyter Notebook.
|
16 |
-
|
17 |
-
Parameters:
|
18 |
-
text (str): The Arabic text to display.
|
19 |
-
colour (str): The color of the text. Default is "blue".
|
20 |
-
"""
|
21 |
-
text=text.replace("\n","<br>")
|
22 |
-
html_content = f"""
|
23 |
-
<div style="direction: rtl; text-align: right; font-size: 16px; line-height: 1.5; color: {colour};">
|
24 |
-
{text}
|
25 |
-
</div>
|
26 |
-
"""
|
27 |
-
return HTML(html_content)
|
28 |
-
|
29 |
-
# Example usage
|
30 |
-
my_arabic_text = """
|
31 |
-
باسم صاحب السمو الشيخ خليفة بن زايد آل نهيان رئيس دولة الإمارات العربية المتحدة / حاكم إمارة أبو ظبي
|
32 |
-
بالجلسة المنعقدة بـ محكمة ابوظبي العمالية-ابتدائي بتاريخ 2 جمادى الآخرة 1441 هـ الموافق 27/01/2020 م
|
33 |
-
برئاسة القاضي: إبراهيم ناصر الاحبابي وعضوية القاضي: مرتضى الصديق الحسن وعضوية القاضي: خليفة سليم
|
34 |
-
"""
|
35 |
-
|
36 |
-
# Display the text using the function
|
37 |
-
arabic_print(my_arabic_text, colour="green")
|
38 |
-
|
39 |
-
from openai import AzureOpenAI
|
40 |
-
|
41 |
-
AZURE_OPENAI_PREVIEW_API_VERSION = os.getenv("AZURE_OPENAI_PREVIEW_API_VERSION")
|
42 |
-
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
43 |
-
AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
|
44 |
-
|
45 |
-
client = AzureOpenAI(
|
46 |
-
azure_endpoint = AZURE_OPENAI_ENDPOINT,
|
47 |
-
api_key=AZURE_OPENAI_KEY,
|
48 |
-
api_version= AZURE_OPENAI_PREVIEW_API_VERSION
|
49 |
-
)
|
50 |
-
|
51 |
-
def call_gpt_azure_message(message_text):
|
52 |
-
completion = client.chat.completions.create(
|
53 |
-
#model="GPT4Turbo",
|
54 |
-
model="gpt-4o",
|
55 |
-
messages = message_text,
|
56 |
-
temperature=0.0,
|
57 |
-
max_tokens=1000,
|
58 |
-
top_p=0.95,
|
59 |
-
frequency_penalty=0,
|
60 |
-
presence_penalty=0,
|
61 |
-
stop=None,
|
62 |
-
)
|
63 |
-
return completion.choices[0].message.content
|
64 |
-
|
65 |
-
|
66 |
-
def call_gpt_azure_message_stream(message_text):
|
67 |
-
completion = client.chat.completions.create(
|
68 |
-
#model="GPT4Turbo",
|
69 |
-
model="gpt-4o",
|
70 |
-
messages = message_text,
|
71 |
-
temperature=0.0,
|
72 |
-
max_tokens=2000,
|
73 |
-
top_p=0.95,
|
74 |
-
frequency_penalty=0,
|
75 |
-
presence_penalty=0,
|
76 |
-
stop=None,
|
77 |
-
stream=True
|
78 |
-
)
|
79 |
-
return completion
|
80 |
-
|
81 |
-
|
82 |
-
def call_gpt_azure(SYS_PROMPT,USER_PROMPT,MODEL="gpt-4o"):
|
83 |
-
message_text=[
|
84 |
-
{
|
85 |
-
"role": "system",
|
86 |
-
"content": SYS_PROMPT
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"role": "user",
|
90 |
-
"content": USER_PROMPT
|
91 |
-
},
|
92 |
-
|
93 |
-
]
|
94 |
-
|
95 |
-
completion = client.chat.completions.create(
|
96 |
-
model=MODEL,
|
97 |
-
messages = message_text,
|
98 |
-
temperature=0.0,
|
99 |
-
max_tokens=1000,
|
100 |
-
top_p=0.95,
|
101 |
-
frequency_penalty=0,
|
102 |
-
presence_penalty=0,
|
103 |
-
stop=None
|
104 |
-
)
|
105 |
-
return completion.choices[0].message.content
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
# This is the main embedding function , that takes as input text and generate 1536 floats using ada3_small
|
110 |
-
def generate_embeddings(text, model="ada3_small"): # model = "deployment_name"
|
111 |
-
return client.embeddings.create(input = [text], model=model).data[0].embedding
|
112 |
-
|
113 |
-
|
114 |
-
import tiktoken
|
115 |
-
enc = tiktoken.get_encoding("o200k_base")
|
116 |
-
assert enc.decode(enc.encode("hello world")) == "hello world"
|
117 |
-
|
118 |
-
# To get the tokeniser corresponding to a specific model in the OpenAI API:
|
119 |
-
enc = tiktoken.encoding_for_model("gpt-4o")
|
120 |
-
|
121 |
-
import tiktoken
|
122 |
-
|
123 |
-
def count_tokens_ada3(text, model_name="text-embedding-3-small"):
|
124 |
-
# Automatically get the correct encoding for the given model
|
125 |
-
encoding = tiktoken.encoding_for_model(model_name)
|
126 |
-
# Encode the text and count the tokens
|
127 |
-
return len(encoding.encode(text))
|
128 |
-
|
129 |
-
|
130 |
-
def Get_nearest_cases_Json(case,K):
|
131 |
-
vquery=np.array(generate_embeddings(case))
|
132 |
-
vquery=vquery.reshape(1,-1)
|
133 |
-
|
134 |
-
D, I = index_law.search(vquery, K) # search
|
135 |
-
cxt_cases=""
|
136 |
-
cxt_list=[]
|
137 |
-
Locs=I[0]
|
138 |
-
for L in Locs:
|
139 |
-
cxt_cases+=str(json_cases[L])
|
140 |
-
|
141 |
-
|
142 |
-
return cxt_cases
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
def count_tokens(text):
|
147 |
-
return len(enc.encode(text))
|
148 |
-
|
149 |
-
vec_embs=np.load("
|
150 |
-
|
151 |
-
index_law=faiss.IndexFlatIP(vec_embs.shape[1])
|
152 |
-
index_law.add(vec_embs)
|
153 |
-
|
154 |
-
#case=Emb_text_list[10]
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
# File path
|
159 |
-
output_file = '
|
160 |
-
|
161 |
-
# Read the JSON file
|
162 |
-
with open(output_file, 'r', encoding='utf-8') as file:
|
163 |
-
json_cases = json.load(file)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
def GPT_AI_Judge_Json(case , cxt):
|
168 |
-
SYS_PROMPT="""
|
169 |
-
|
170 |
-
|
171 |
-
**System Role**:
|
172 |
-
You are an **Arabic Legal Judge Assistant**, specialized in analyzing legal cases and extracting insights from related legal precedences.
|
173 |
-
|
174 |
-
|
175 |
-
### **Input Details**:
|
176 |
-
You will be given:
|
177 |
-
1. A **legal case** (primary input).
|
178 |
-
2. A **context** containing multiple legal precedences in json format.
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
### **Your Tasks**:
|
183 |
-
1. **Analyze the Input Case**:
|
184 |
-
- Focus on the **description of the case** (توصيف القضية) and its key aspects.
|
185 |
-
|
186 |
-
2. **Identify Relevant legal Precedences**:
|
187 |
-
- Search the provided context for precedences only **closely related** to the input case.
|
188 |
-
|
189 |
-
3. **Create a Comparative Analysis**:
|
190 |
-
- Present a **contrastive table** comparing the relevant precedences with columns containing metadata in context
|
191 |
-
4. **Discussion of Key Points**:
|
192 |
-
- Highlight **commonalities and differences** between the input case and the relevant precedences.
|
193 |
-
|
194 |
-
5. **Suggest a Ruling Decision**:
|
195 |
-
- Provide a **recommendation** for the Judge, based on the rulings of the similar precedences.
|
196 |
-
|
197 |
-
---
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
### **If No Relevant Precedences**:
|
203 |
-
- Clearly state that no related precedences were identified from the context.
|
204 |
-
- Apologize and note that a ruling recommendation cannot be provided.
|
205 |
-
|
206 |
-
---
|
207 |
-
|
208 |
-
### **Response Format**:
|
209 |
-
1. **Comparative Table**:
|
210 |
-
- compare relevant precedences in a table.
|
211 |
-
|
212 |
-
2. **RTL Formatting**:
|
213 |
-
- Use **right-to-left (RTL)** direction and **right alignment**.
|
214 |
-
- Ensure all headers, lists, and paragraphs include `dir="rtl"` and `text-align: right`.
|
215 |
-
|
216 |
-
3. **Clear Structure**:
|
217 |
-
- Provide a well-organized response for proper Arabic rendering.
|
218 |
-
|
219 |
-
---
|
220 |
-
|
221 |
-
"""
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
User_Prompt=f"Input Legal Case {case} \n Legal precedences context : {cxt}"
|
226 |
-
message_text=[
|
227 |
-
{
|
228 |
-
"role": "system",
|
229 |
-
"content": SYS_PROMPT
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"role": "user",
|
233 |
-
"content": User_Prompt
|
234 |
-
},
|
235 |
-
|
236 |
-
]
|
237 |
-
completion = client.chat.completions.create(
|
238 |
-
#model="gpt-35-turbo-16k",
|
239 |
-
model="gpt-4o",
|
240 |
-
messages = message_text,
|
241 |
-
temperature=0.0,
|
242 |
-
max_tokens=3500,
|
243 |
-
top_p=0.95,
|
244 |
-
frequency_penalty=0,
|
245 |
-
presence_penalty=0,
|
246 |
-
stop=None
|
247 |
-
)
|
248 |
-
return completion.choices[0].message.content
|
249 |
-
|
250 |
-
|
251 |
-
import gradio as gr
|
252 |
-
|
253 |
-
# Define the processing function
|
254 |
-
def gpt_judge(case,history):
|
255 |
-
cxt=Get_nearest_cases_Json(case,5)
|
256 |
-
print("Tokens ==>",count_tokens(cxt))
|
257 |
-
# Example: Generate a markdown response
|
258 |
-
response = GPT_AI_Judge_Json(case,cxt)
|
259 |
-
# Save the response to a Markdown file
|
260 |
-
# Convert Markdown to HTML
|
261 |
-
return response
|
262 |
-
welcome_message="اذكر احداث ووقائع وملابسات القضية وسأقوم بتحليلها و اقتراح الحكم بناءا عى سوابق قضائية مشابهة "
|
263 |
-
|
264 |
-
chatbot=gr.Chatbot(value=[(None,welcome_message)],height=800,rtl=True)
|
265 |
-
|
266 |
-
tit_html='\n<div style="text-align: right;">\n<p>اذكر الوقائع الخاصة بالقضية وتوصيفها للحصول على الاستشارة القانونية المناسبة.</p>\n</div>\n'
|
267 |
-
tit_img = """
|
268 |
-
<div style="text-align: right;">
|
269 |
-
<img src="https://i.postimg.cc/rytvLcdm/ksa-leg.png" alt="Stars Logo" width="200" height="200">
|
270 |
-
</div>
|
271 |
-
"""
|
272 |
-
with gr.Blocks() as demo:
|
273 |
-
|
274 |
-
|
275 |
-
gr.ChatInterface(
|
276 |
-
gpt_judge,
|
277 |
-
chatbot=chatbot,
|
278 |
-
title=tit_img,
|
279 |
-
description=tit_html,
|
280 |
-
theme="soft",
|
281 |
-
retry_btn=None,
|
282 |
-
undo_btn="Delete Previous",
|
283 |
-
clear_btn="Clear"
|
284 |
-
)
|
285 |
-
#btn = gr.Button("توعية قانونية")
|
286 |
-
#btn.click(fn=greet)
|
287 |
-
|
288 |
-
|
289 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from openai import AzureOpenAI
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import re
|
9 |
+
import tiktoken
|
10 |
+
import os
|
11 |
+
from IPython.display import HTML
|
12 |
+
|
13 |
+
def arabic_print(text, colour="blue"):
|
14 |
+
"""
|
15 |
+
Displays Arabic text with proper RTL and right alignment in Jupyter Notebook.
|
16 |
+
|
17 |
+
Parameters:
|
18 |
+
text (str): The Arabic text to display.
|
19 |
+
colour (str): The color of the text. Default is "blue".
|
20 |
+
"""
|
21 |
+
text=text.replace("\n","<br>")
|
22 |
+
html_content = f"""
|
23 |
+
<div style="direction: rtl; text-align: right; font-size: 16px; line-height: 1.5; color: {colour};">
|
24 |
+
{text}
|
25 |
+
</div>
|
26 |
+
"""
|
27 |
+
return HTML(html_content)
|
28 |
+
|
29 |
+
# Example usage
|
30 |
+
my_arabic_text = """
|
31 |
+
باسم صاحب السمو الشيخ خليفة بن زايد آل نهيان رئيس دولة الإمارات العربية المتحدة / حاكم إمارة أبو ظبي
|
32 |
+
بالجلسة المنعقدة بـ محكمة ابوظبي العمالية-ابتدائي بتاريخ 2 جمادى الآخرة 1441 هـ الموافق 27/01/2020 م
|
33 |
+
برئاسة القاضي: إبراهيم ناصر الاحبابي وعضوية القاضي: مرتضى الصديق الحسن وعضوية القاضي: خليفة سليم
|
34 |
+
"""
|
35 |
+
|
36 |
+
# Display the text using the function
|
37 |
+
arabic_print(my_arabic_text, colour="green")
|
38 |
+
|
39 |
+
from openai import AzureOpenAI
|
40 |
+
|
41 |
+
AZURE_OPENAI_PREVIEW_API_VERSION = os.getenv("AZURE_OPENAI_PREVIEW_API_VERSION")
|
42 |
+
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
43 |
+
AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
|
44 |
+
|
45 |
+
client = AzureOpenAI(
|
46 |
+
azure_endpoint = AZURE_OPENAI_ENDPOINT,
|
47 |
+
api_key=AZURE_OPENAI_KEY,
|
48 |
+
api_version= AZURE_OPENAI_PREVIEW_API_VERSION
|
49 |
+
)
|
50 |
+
|
51 |
+
def call_gpt_azure_message(message_text):
|
52 |
+
completion = client.chat.completions.create(
|
53 |
+
#model="GPT4Turbo",
|
54 |
+
model="gpt-4o",
|
55 |
+
messages = message_text,
|
56 |
+
temperature=0.0,
|
57 |
+
max_tokens=1000,
|
58 |
+
top_p=0.95,
|
59 |
+
frequency_penalty=0,
|
60 |
+
presence_penalty=0,
|
61 |
+
stop=None,
|
62 |
+
)
|
63 |
+
return completion.choices[0].message.content
|
64 |
+
|
65 |
+
|
66 |
+
def call_gpt_azure_message_stream(message_text):
|
67 |
+
completion = client.chat.completions.create(
|
68 |
+
#model="GPT4Turbo",
|
69 |
+
model="gpt-4o",
|
70 |
+
messages = message_text,
|
71 |
+
temperature=0.0,
|
72 |
+
max_tokens=2000,
|
73 |
+
top_p=0.95,
|
74 |
+
frequency_penalty=0,
|
75 |
+
presence_penalty=0,
|
76 |
+
stop=None,
|
77 |
+
stream=True
|
78 |
+
)
|
79 |
+
return completion
|
80 |
+
|
81 |
+
|
82 |
+
def call_gpt_azure(SYS_PROMPT,USER_PROMPT,MODEL="gpt-4o"):
|
83 |
+
message_text=[
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content": SYS_PROMPT
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": USER_PROMPT
|
91 |
+
},
|
92 |
+
|
93 |
+
]
|
94 |
+
|
95 |
+
completion = client.chat.completions.create(
|
96 |
+
model=MODEL,
|
97 |
+
messages = message_text,
|
98 |
+
temperature=0.0,
|
99 |
+
max_tokens=1000,
|
100 |
+
top_p=0.95,
|
101 |
+
frequency_penalty=0,
|
102 |
+
presence_penalty=0,
|
103 |
+
stop=None
|
104 |
+
)
|
105 |
+
return completion.choices[0].message.content
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
# This is the main embedding function , that takes as input text and generate 1536 floats using ada3_small
|
110 |
+
def generate_embeddings(text, model="ada3_small"): # model = "deployment_name"
|
111 |
+
return client.embeddings.create(input = [text], model=model).data[0].embedding
|
112 |
+
|
113 |
+
|
114 |
+
import tiktoken
|
115 |
+
enc = tiktoken.get_encoding("o200k_base")
|
116 |
+
assert enc.decode(enc.encode("hello world")) == "hello world"
|
117 |
+
|
118 |
+
# To get the tokeniser corresponding to a specific model in the OpenAI API:
|
119 |
+
enc = tiktoken.encoding_for_model("gpt-4o")
|
120 |
+
|
121 |
+
import tiktoken
|
122 |
+
|
123 |
+
def count_tokens_ada3(text, model_name="text-embedding-3-small"):
|
124 |
+
# Automatically get the correct encoding for the given model
|
125 |
+
encoding = tiktoken.encoding_for_model(model_name)
|
126 |
+
# Encode the text and count the tokens
|
127 |
+
return len(encoding.encode(text))
|
128 |
+
|
129 |
+
|
130 |
+
def Get_nearest_cases_Json(case,K):
|
131 |
+
vquery=np.array(generate_embeddings(case))
|
132 |
+
vquery=vquery.reshape(1,-1)
|
133 |
+
|
134 |
+
D, I = index_law.search(vquery, K) # search
|
135 |
+
cxt_cases=""
|
136 |
+
cxt_list=[]
|
137 |
+
Locs=I[0]
|
138 |
+
for L in Locs:
|
139 |
+
cxt_cases+=str(json_cases[L])
|
140 |
+
|
141 |
+
|
142 |
+
return cxt_cases
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
def count_tokens(text):
|
147 |
+
return len(enc.encode(text))
|
148 |
+
|
149 |
+
vec_embs=np.load("data/All_cases_embedded.npy")
|
150 |
+
|
151 |
+
index_law=faiss.IndexFlatIP(vec_embs.shape[1])
|
152 |
+
index_law.add(vec_embs)
|
153 |
+
|
154 |
+
#case=Emb_text_list[10]
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
# File path
|
159 |
+
output_file = 'data/KSA_Legal_cases.json'
|
160 |
+
|
161 |
+
# Read the JSON file
|
162 |
+
with open(output_file, 'r', encoding='utf-8') as file:
|
163 |
+
json_cases = json.load(file)
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
def GPT_AI_Judge_Json(case , cxt):
|
168 |
+
SYS_PROMPT="""
|
169 |
+
|
170 |
+
|
171 |
+
**System Role**:
|
172 |
+
You are an **Arabic Legal Judge Assistant**, specialized in analyzing legal cases and extracting insights from related legal precedences.
|
173 |
+
|
174 |
+
|
175 |
+
### **Input Details**:
|
176 |
+
You will be given:
|
177 |
+
1. A **legal case** (primary input).
|
178 |
+
2. A **context** containing multiple legal precedences in json format.
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
### **Your Tasks**:
|
183 |
+
1. **Analyze the Input Case**:
|
184 |
+
- Focus on the **description of the case** (توصيف القضية) and its key aspects.
|
185 |
+
|
186 |
+
2. **Identify Relevant legal Precedences**:
|
187 |
+
- Search the provided context for precedences only **closely related** to the input case.
|
188 |
+
|
189 |
+
3. **Create a Comparative Analysis**:
|
190 |
+
- Present a **contrastive table** comparing the relevant precedences with columns containing metadata in context
|
191 |
+
4. **Discussion of Key Points**:
|
192 |
+
- Highlight **commonalities and differences** between the input case and the relevant precedences.
|
193 |
+
|
194 |
+
5. **Suggest a Ruling Decision**:
|
195 |
+
- Provide a **recommendation** for the Judge, based on the rulings of the similar precedences.
|
196 |
+
|
197 |
+
---
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
### **If No Relevant Precedences**:
|
203 |
+
- Clearly state that no related precedences were identified from the context.
|
204 |
+
- Apologize and note that a ruling recommendation cannot be provided.
|
205 |
+
|
206 |
+
---
|
207 |
+
|
208 |
+
### **Response Format**:
|
209 |
+
1. **Comparative Table**:
|
210 |
+
- compare relevant precedences in a table.
|
211 |
+
|
212 |
+
2. **RTL Formatting**:
|
213 |
+
- Use **right-to-left (RTL)** direction and **right alignment**.
|
214 |
+
- Ensure all headers, lists, and paragraphs include `dir="rtl"` and `text-align: right`.
|
215 |
+
|
216 |
+
3. **Clear Structure**:
|
217 |
+
- Provide a well-organized response for proper Arabic rendering.
|
218 |
+
|
219 |
+
---
|
220 |
+
|
221 |
+
"""
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
User_Prompt=f"Input Legal Case {case} \n Legal precedences context : {cxt}"
|
226 |
+
message_text=[
|
227 |
+
{
|
228 |
+
"role": "system",
|
229 |
+
"content": SYS_PROMPT
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"role": "user",
|
233 |
+
"content": User_Prompt
|
234 |
+
},
|
235 |
+
|
236 |
+
]
|
237 |
+
completion = client.chat.completions.create(
|
238 |
+
#model="gpt-35-turbo-16k",
|
239 |
+
model="gpt-4o",
|
240 |
+
messages = message_text,
|
241 |
+
temperature=0.0,
|
242 |
+
max_tokens=3500,
|
243 |
+
top_p=0.95,
|
244 |
+
frequency_penalty=0,
|
245 |
+
presence_penalty=0,
|
246 |
+
stop=None
|
247 |
+
)
|
248 |
+
return completion.choices[0].message.content
|
249 |
+
|
250 |
+
|
251 |
+
import gradio as gr
|
252 |
+
|
253 |
+
# Define the processing function
|
254 |
+
def gpt_judge(case,history):
|
255 |
+
cxt=Get_nearest_cases_Json(case,5)
|
256 |
+
print("Tokens ==>",count_tokens(cxt))
|
257 |
+
# Example: Generate a markdown response
|
258 |
+
response = GPT_AI_Judge_Json(case,cxt)
|
259 |
+
# Save the response to a Markdown file
|
260 |
+
# Convert Markdown to HTML
|
261 |
+
return response
|
262 |
+
welcome_message="اذكر احداث ووقائع وملابسات القضية وسأقوم بتحليلها و اقتراح الحكم بناءا عى سوابق قضائية مشابهة "
|
263 |
+
|
264 |
+
chatbot=gr.Chatbot(value=[(None,welcome_message)],height=800,rtl=True)
|
265 |
+
|
266 |
+
tit_html='\n<div style="text-align: right;">\n<p>اذكر الوقائع الخاصة بالقضية وتوصيفها للحصول على الاستشارة القانونية المناسبة.</p>\n</div>\n'
|
267 |
+
tit_img = """
|
268 |
+
<div style="text-align: right;">
|
269 |
+
<img src="https://i.postimg.cc/rytvLcdm/ksa-leg.png" alt="Stars Logo" width="200" height="200">
|
270 |
+
</div>
|
271 |
+
"""
|
272 |
+
with gr.Blocks() as demo:
|
273 |
+
|
274 |
+
|
275 |
+
gr.ChatInterface(
|
276 |
+
gpt_judge,
|
277 |
+
chatbot=chatbot,
|
278 |
+
title=tit_img,
|
279 |
+
description=tit_html,
|
280 |
+
theme="soft",
|
281 |
+
retry_btn=None,
|
282 |
+
undo_btn="Delete Previous",
|
283 |
+
clear_btn="Clear"
|
284 |
+
)
|
285 |
+
#btn = gr.Button("توعية قانونية")
|
286 |
+
#btn.click(fn=greet)
|
287 |
+
|
288 |
+
|
289 |
+
demo.launch()
|