E-slam's picture
Update app.py
a5561d7 verified
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex, ServiceContext
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.readers.file import PDFReader
from llama_index.core.schema import IndexNode
from llama_index.core import Document
from langchain_core.messages import HumanMessage
from langchain_openai import AzureChatOpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from sentence_transformers import util
from datasets import load_dataset
from openai import AzureOpenAI
from bs4 import BeautifulSoup
import pyshorteners
import gradio as gr
import pandas as pd
import numpy as np
import warnings
import pickle
import string
import json
import time
import ast
import os
import re
client = AzureOpenAI(
azure_endpoint = "https://moj-ada3.openai.azure.com/",
api_key="9639718f1a7d478a9313d2b2aeb5dacc",
api_version="2024-02-15-preview"
)
df = pd.read_csv("data/Data.csv")
warnings.filterwarnings("ignore")
def extract_title(text):
if '-' in text:
return text.split('-')[-1].strip()
elif '–' in text:
return text.split('–')[-1].strip()
else:
return ""
def remove_title(text):
if '-' in text:
return text.split('-')[0].strip()
elif '–' in text:
return text.split('–')[0].strip()
else:
return text
def get_articles(i):
try:
result_df = pd.DataFrame(columns=['Header', 'Text','Comment'])
#html = df[df['Id'] == 35850]['HTML'][621]
html = df['HTML'][i]
soup = BeautifulSoup(html, 'html.parser')
divs = soup.find_all('div')
h_class = 'x__1575___1604___1605___1575___1583___1577_14'
x = 0
txt = ''
headers = ast.literal_eval(df['Subjects'][i])
for d in divs:
try:
if d.get('class') is None:
d_class = d.find('div').get('class')[0]
d_text = d.find('div').text.replace('\n\n',' ').replace('\n',' ')
else:
d_class = d.get('class')[0]
d_text = d.text.replace('\n\n',' ').replace('\n',' ')
if h_class not in d_class:
txt += " " +d_text
else:
if x == 0:
result_df = pd.concat([result_df, pd.DataFrame({'Header': ['Desc'], 'Text': [txt]})], ignore_index=True)
txt = ''
x += 1
else:
result_df = pd.concat([result_df, pd.DataFrame({'Header': [headers[x-1]], 'Text': [txt]})], ignore_index=True)
txt = ''
x += 1
except:
pass
result_df = pd.concat([result_df, pd.DataFrame({'Header': [headers[x-1]], 'Text': [txt]})], ignore_index=True)
divs_with_showfn = soup.find_all('div', id=lambda x: x and x.startswith('fn'))
for r in range (result_df.shape[0]):
article = result_df['Header'][r].split('-')[0].strip()
for n,d in enumerate(divs_with_showfn):
edit = d.text.replace('\n\n',' ').replace('\n',' ')
match = edit[:35]
if (article.replace("الأولى","الاولى") in match.replace("الأولى","الاولى")) and ("القديم" in match) :
#result_df['Text'][r] += "\n\n-تعديل-\n\n" + edit
result_df['Comment'][r] = edit
if divs_with_showfn:
firstindex = divs_with_showfn[0].text.replace('\n\n',' ').replace('\n',' ')
last_e = result_df.shape[0] -1
mada = result_df['Text'][last_e]
if firstindex in mada :
result_df['Text'][last_e] = (mada.split(firstindex)[0])
#result_df['Title'] = result_df['Header'].apply(extract_title)
#result_df['Header'] = result_df['Header'].apply(remove_title)
return result_df.reset_index(drop=True)
except:
pass
with open('data/ada_base_index_small.pkl', 'rb') as f:
base_index_ = pickle.load(f)
azure_endpoint = "https://moj-ada3.openai.azure.com/"
api_key="9639718f1a7d478a9313d2b2aeb5dacc"
api_version="2024-02-15-preview"
deployment = "gpt-35-turbo-16k"
os.environ["AZURE_OPENAI_API_KEY"] = api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = azure_endpoint
llm_chain = AzureChatOpenAI(
openai_api_version= api_version,
azure_deployment= deployment,
)
client = AzureOpenAI(
azure_endpoint = "https://moj-ada3.openai.azure.com/",
api_key="9639718f1a7d478a9313d2b2aeb5dacc",
api_version="2024-02-15-preview"
)
SYS_TEMPLATE = """
The following is a friendly conversation between a human and an AI.
AI must follow the Instructions below
Instructions:
- AI is an Arabic legal expert in the UAE.
- AI shall always reply in Arabic.
- AI shall never reply in English.
- AI shall not repeat any questions or rephrase them.
- AI shall ask a presise question if needed to determine the user's intent.
- AI shall only ask a maximum of one question if needed to human and then determine his intent.
- AI shall only reply to questions related to law subjects.
- AI shall not answer or explain or give any advice to user questions.
- AI MUST not provide any details ever from given information, only use it to determine the desired intent.
- AI shall use the given information only to ask precise and short question to determine user intent.
- AI shall determine the user desired intent with the minimum number of questions possible.
- AI shall not ask the user again after the user confirms on any question.
- AI shall decide user intent if the user's query contains enough details without asiking him any more questions.
- AI shall decide which suits query better if user wants a general info or says give me anything.
- AI's only purpose is to determine the intended topic from the user.
- AI shall choose node with the best description matching with the human's intent.
- AI shall always end the conversation with the returns below as long as the user question matches with given info.
- if AI asks a question and human says he dosent know the spesific law or article then AI shall determine and end the conversation with the returns below.
- if Human asks a question (Is it permissible (هل يجوز)) AI should find the best node that can answer the question with yes or no.
- AI shall end the conversation when the user confirms his intent and return as mentioned below from node's metadata.
- AI shall mention every detail the user wants in the userintent returns.
- AI MUST include the five digits number in the returns.
- AI shall never leave the ID in returns empty it should always be five digits.
Returns:
[
ID: five didgits number ,
Topic: ,
userIntent :
]
Information:
{}
"""
sys_prompt_intent = """
The following is a friendly conversation between a human and an AI.
AI must follow the Instructions below
Instructions:
- AI is an Arabic legal expert in the UAE.
- AI shall always reply in Arabic.
- AI shall never reply in English.
- AI shall answer the human questions based on the content provided.
- AI shall answer only from within the Content provided , and NOT from outside.
- AI shall answer using the exact text in content and not improvise.
- AI shall NOT improvise , or give any advices nor explanation.
- AI shall not provide any links to user and tell him to search in it, it should always provide the required info.
- AI shall always answer to the user query in a professional and informative way inculding all the details.
- ِAI shall answer every question asked in the conversation from human in a detailed way.
- AI shall include in the answer the article number (رقم المادة)
Content:
{}
"""
punctuations = string.punctuation
def generate_embeddings(text, model="ada3_small"):
return client.embeddings.create(input = [text], model=model).data[0].embedding
base_retriever = base_index_.as_retriever(similarity_top_k=10)
def query_df(query):
retrievals = base_retriever.retrieve(
query
)
related_texts = []
metadatas = []
info = ''
for i,r in enumerate(retrievals):
article_index = df[df['Id'] == int(r.metadata['ID'])].index[0]
article_df = get_articles(article_index)
article_intended = article_df[article_df['Header'] == r.metadata['Article']].reset_index()
article_text = article_intended['Text'][0]
if len(article_text) > 800 :
related_txt = related_text(article_text, query, 800)[0]
else:
related_txt = article_text
meta = r.metadata
meta = {
'Description': meta['Description'],
'ID': meta['ID'],
#'Title': meta['Title']
}
info += f"Node Number {i+1} : {related_txt} -- Node MetaData : {meta}\n"
return info
from llama_index.core.vector_stores.types import ExactMatchFilter, MetadataFilters
def query_df_filtered(query,id):
filters = MetadataFilters(filters=[
ExactMatchFilter(
key="ID",
value=str(id)
)
])
b_retriever = base_index_.as_retriever(similarity_top_k=3, filters=filters)
retrievals = b_retriever.retrieve(
query
)
related_texts = []
metadatas = []
info_filtered = ''
for i,r in enumerate(retrievals):
article_index = df[df['Id'] == int(r.metadata['ID'])].index[0]
article_df = get_articles(article_index)
article_intended = article_df[article_df['Header'] == r.metadata['Article']].reset_index()
article_text = article_intended['Text'][0]
if len(article_text) > 5000 :
related_txt = related_text(article_text, query, 5000)[0]
else:
related_txt = article_text
meta = r.metadata
meta = {
#'Title': meta['Title'],
'Header' : meta['Article']
}
info_filtered += f"Article {meta} : {related_txt} \n"
return info_filtered
def related_text(txt, q, size):
text_splitter = CharacterTextSplitter(
separator = " ",
chunk_size = size,
chunk_overlap = 50,
length_function = len,
)
chunks = text_splitter.split_text(txt)
embeddings = [generate_embeddings(chunk) for chunk in chunks]
def similarity(q):
query_embedding = generate_embeddings(q)
similarity_scores = util.cos_sim(query_embedding, embeddings)
sorted_indices = np.argsort(-similarity_scores)
indexes = []
indexes.append(int(sorted_indices[0][0]))
new_chunks = [chunks[i] for i in indexes]
ans = '\n'.join(new_chunks)
return new_chunks
return similarity(q)
def format_messages(message_list):
formatted_messages = []
current_speaker = None
for message in message_list:
if 'HumanMessage' in str(type(message)):
if current_speaker != 'Human':
current_speaker = 'Human'
formatted_messages.append(f'{current_speaker} : {message.content}')
else:
formatted_messages[-1] += f' {message.content}'
elif 'AIMessage' in str(type(message)):
if current_speaker != 'AI':
current_speaker = 'AI'
formatted_messages.append(f'{current_speaker} : {message.content}')
else:
formatted_messages[-1] += f' {message.content}'
return '\n'.join(formatted_messages)
def memory_prompt():
global history
if len (memory.chat_memory.messages) <= 8 :
chat_history_lines = format_messages(memory.chat_memory.messages)
else:
chat_history_lines = format_messages(memory.chat_memory.messages[8:])
prompt = f"""
Current conversation:
{chat_history_lines}
"""
return prompt
def update_prompt(human, ai):
memory.save_context({"input": human}, {"output": ai})
prompt = memory_prompt()
return prompt
shortener = pyshorteners.Shortener()
short_url = shortener.tinyurl.short(df['Links'][0])
mod ="gpt-35-turbo-16k"
memory = ConversationBufferWindowMemory()
x=0
info = ''
history = ''
is_locked = False
is_found = False
new_session = False
is_new = False
captured_ID = ''
user_intent_text = ''
full_ans = ''
prompt = f"""
Current conversation:
"""
def clean_ans (answer):
if answer.startswith("Assistant:"):
answer = answer[len("Assistant:"):]
elif answer.startswith("AI:"):
answer = answer[len("AI:"):]
elif answer.startswith("AI :"):
answer = answer[len("AI :"):]
# if answer.startswith("Assistant:"):
# answer = answer[len("Assistant:"):]
# answer = answer[:(len(answer)-len("Assistant:"))]
# elif answer.startswith("AI:"):
# answer = answer[len("AI:"):]
# answer = answer[:(len(answer)-len("AI:"))]
# elif answer.startswith("AI :"):
# answer = answer[len("AI :"):]
# answer = answer[:(len(answer)-len("AI :"))]
return answer
def user(user_message, history):
return "", history + [[user_message, None]]
def slow_echo(history):
global prompt
global is_locked
global is_found
global captured_ID
global user_intent_text
global x
global info
global new_session
global full_ans
global is_new
user_message = history[-1][0]
my_query = history[-1][0]
if x == 0:
info = query_df(user_message)
x+=1
if is_locked == False:
SYS_PROMPT = SYS_TEMPLATE.format(info)
USER_PROMPT = prompt.rstrip() + f"\nHuman : {user_message}"
message_text=[
{
"role": "system",
"content": SYS_PROMPT
},
{
"role": "user",
"content": USER_PROMPT
},
]
stream = client.chat.completions.create(
model= mod,
messages = message_text,
temperature=0.0,
max_tokens=1700,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None,
stream=True,
)
history[-1][1] = ""
full_ans =""
cleaned = False
is_found = False
for chunk in stream:
if not chunk.choices:
pass
else:
if chunk.choices[0].delta.content is not None:
if is_found == False:
if cleaned == False:
full_ans += chunk.choices[0].delta.content
if len(full_ans) >= 1500 :
cleaned = True
full_ans = clean_ans(full_ans)
if 'id' in full_ans.lower():
is_found = True
else:
for t in full_ans:
time.sleep(0.03)
history[-1][1] += t
yield history
elif cleaned == True:
time.sleep(0.03)
full_ans += chunk.choices[0].delta.content
history[-1][1] += chunk.choices[0].delta.content
yield history
else:
full_ans += chunk.choices[0].delta.content
if is_found == False:
if len(full_ans) <1500 :
if 'id' in full_ans.lower():
is_found = True
else:
full_ans = clean_ans(full_ans)
for t in full_ans:
time.sleep(0.02)
history[-1][1] += t
yield history
########################################################################################################
else :
full_ans = captured_ID
if (is_found) or (is_locked) :
if not is_locked:
pattern = r'\b\d{5}\b'
matches = re.findall(pattern, full_ans)
captured_ID = matches[0]
matched = re.search(r'user(?:intent)?\s*:\s*(.*)', full_ans, re.IGNORECASE)
user_intent_text = (matched.group(1).strip())
user_intent_text = "".join([x for x in user_intent_text if x not in punctuations])
my_query = user_intent_text
else:
my_query = user_message
related_txt = query_df_filtered(my_query, captured_ID)
law_df = df[df['Id'] == int(captured_ID)].reset_index()
##################################################################2nd
SYS_PROMPT = sys_prompt_intent.format(related_txt)
USER_PROMPT = prompt.rstrip() + f"\nHuman : {my_query}"
message_text=[
{
"role": "system",
"content": SYS_PROMPT
},
{
"role": "user",
"content": USER_PROMPT
},
]
stream = client.chat.completions.create(
model= mod,
messages = message_text,
temperature=0.0,
max_tokens=1500,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None,
stream=True,
)
history[-1][1] = ""
full_ans = ''
for chunk in stream:
if not chunk.choices:
pass
else:
if chunk.choices[0].delta.content is not None:
time.sleep(0.03)
history[-1][1] += clean_ans(chunk.choices[0].delta.content)
full_ans += clean_ans(chunk.choices[0].delta.content)
yield (history)
########################################################################################################
if not is_locked:
link = shortener.tinyurl.short(law_df['Links'][0])
law_links = f"\n\nTopic : {law_df['Topic'][0]}\nLink : {link}"
for chunk in law_links:
time.sleep(0.01)
history[-1][1] += chunk
yield history
is_locked = True
else:
pass
prompt = update_prompt(my_query, full_ans)
def test_function():
global new_session
global is_locked
global is_found
global user_intent_text
global captured_ID
global full_ans
global history
global info
global prompt
global x
global memory
memory = ConversationBufferWindowMemory()
new_session = False
is_locked = False
is_found = False
user_intent_text = ''
captured_ID = ''
full_ans = ''
history = ''
info = ''
x=0
prompt = f"""
Current conversation:
"""
def reset_echo(history):
history = [history[0]]
yield history
welcome_message=" مرحبا معك عمار متخصص في موسوعة القوانين لوزارة العدل بالامارات.كيف يمكنني مساعدتك ؟ "
desc = "البوابة القانونية لوزارة العدل - الامارات العربية المتحدة- القوانين والتشريعات"
with gr.Blocks(theme=gr.themes.Soft(), title="HI") as demo:
with gr.Row():
image_path = "https://i.postimg.cc/kgJGhg32/UAE-MOJ-img.png"
gr.Image(image_path, height=120, show_download_button=False, show_label= False)
gr.Markdown(value=desc, rtl=True)
chatbot = gr.Chatbot(value=[(None,welcome_message)],height=350, rtl=True)
with gr.Row():
msg = gr.Textbox(container=False, min_width=750)
submit_btn = gr.Button(value="Submit", variant="primary")
submit_btn.click()
with gr.Row():
new_search = gr.Button(value="بحث جديد")
new_search.click(fn=test_function)
#gr.ClearButton([msg, chatbot])
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
slow_echo, chatbot, chatbot
)
submit_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
slow_echo, chatbot, chatbot
)
new_search.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
reset_echo, chatbot, chatbot
)
demo.launch(inline=False)