UNIST-Eunchan
commited on
Commit
β’
e07cf78
1
Parent(s):
fc5a865
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,15 @@ import transformers
|
|
2 |
import streamlit as st
|
3 |
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
|
7 |
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
|
9 |
@st.cache
|
10 |
def load_model(model_name):
|
11 |
-
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
|
13 |
return model
|
14 |
|
@@ -29,14 +31,18 @@ def infer(input_ids, max_length, temperature, top_k, top_p):
|
|
29 |
)
|
30 |
|
31 |
return output_sequences
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
#prompts
|
35 |
-
st.title("
|
36 |
st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
|
37 |
|
38 |
sent = st.text_area("Text", default_value, height = 550)
|
39 |
-
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=
|
40 |
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
|
41 |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
|
42 |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.92)
|
|
|
2 |
import streamlit as st
|
3 |
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
import json
|
6 |
+
|
7 |
+
with open('testbook.json') as f:
|
8 |
+
test_book = json.load(f)
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
|
11 |
|
|
|
12 |
@st.cache
|
13 |
def load_model(model_name):
|
|
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained("UNIST-Eunchan/bart-dnc-booksum")
|
15 |
return model
|
16 |
|
|
|
31 |
)
|
32 |
|
33 |
return output_sequences
|
34 |
+
|
35 |
+
default_value = test_book[0]['book']
|
36 |
+
|
37 |
+
'''
|
38 |
+
'''
|
39 |
|
40 |
#prompts
|
41 |
+
st.title("Book Summarization π")
|
42 |
st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
|
43 |
|
44 |
sent = st.text_area("Text", default_value, height = 550)
|
45 |
+
max_length = st.sidebar.slider("Max Length", value = 512,min_value = 10, max_value=1024)
|
46 |
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
|
47 |
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
|
48 |
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.92)
|