USC-GPT / app.py
bhulston's picture
Update app.py
6e37d5d
raw
history blame
4.28 kB
import streamlit as st
from datetime import time as t
import time
from operator import itemgetter
import os
import json
import getpass
import openai
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
from results import results_agent
from filter import filter_agent
from reranker import reranker
from utils import build_filter
from router import routing_agent
OPENAI_API = st.secrets["OPENAI_API"]
PINECONE_API = st.secrets["PINECONE_API"]
openai.api_key = OPENAI_API
pinecone.init(
api_key= PINECONE_API,
environment="gcp-starter"
)
index_name = "use-class-db"
embeddings = OpenAIEmbeddings(openai_api_key = OPENAI_API)
index = pinecone.Index(index_name)
k = 5
st.title("USC GPT - Find the perfect class")
class_time = st.slider(
"Filter Class Times:",
value=(t(11, 30), t(12, 45)))
units = st.slider(
"Number of units",
1, 4,
value = (1, 4)
)
days = st.multiselect("What days are you free?",
options = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
default = None,
placeholder = "Any day"
)
assistant = st.chat_message("assistant")
initial_message = "How can I help you today?"
def get_rag_results(prompt):
'''
1. Remove filters from the prompt to optimize success of the RAG-based step.
2. Query the Pinecone DB and return the top 25 results based on cosine similarity
3. Rerank the results from vector DB using a BERT-based cross encoder
'''
query = filter_agent(prompt, OPENAI_API)
##Get metadata filters
days_filter = list()
query_filter = {
"start": {"$gte": str(class_time[0])},
"end": {"$lte": str(class_time[1])}
}
if units != "any":
query_filter["units"] = str(int(units)) + ".0 units"
if len(days) > 0:
for i in range(len(days)):
days_filter.append(days[i])
for j in range(i+1, len(days)):
two_day = days[i] + ", " + days[j]
days_filter.append(two_day)
query_filter["days"] = {"$in": days_filter}
## Query the pinecone database
response = index.query(
vector = embeddings.embed_query(query),
top_k = 25,
filter = query_filter,
include_metadata = True
)
response = reranker(query, response) # BERT cross encoder for ranking
return response
if "messages" not in st.session_state:
st.session_state.messages = []
with st.chat_message("assistant"):
st.markdown(initial_message)
st.session_state.messages.append({"role": "assistant", "content": initial_message})
if prompt := st.chat_input("What kind of class are you looking for?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
messages = [{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages]
message_history = " ".join([message["content"] for message in messages])
route = routing_agent(prompt, OPENAI_API, message_history)
if route == "1":
## Option for accessing Vector DB
rag_response = get_rag_results(prompt)
result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response)
assistant_response = results_agent(result_query, OPENAI_API)
else:
## Option if not accessing Database
assistant_response = openai.ChatCompletion.create(
model = "gpt-4",
messages = [
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
]
)["choices"][0]["message"]["content"]
## Display response regardless of route
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})