USC-GPT / app.py
bhulston's picture
Update app.py
93a7ed5
raw
history blame
3.75 kB
import streamlit as st
from datetime import time as t
import time
from operator import itemgetter
import os
import json
import getpass
import openai
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
from results import results_agent
from filter import filter_agent
from reranker import reranker
from utils import build_filter
OPENAI_API = st.secrets["OPENAI_API"]
PINECONE_API = st.secrets["PINECONE_API"]
openai.api_key = OPENAI_API
pinecone.init(
api_key= PINECONE_API,
environment="gcp-starter"
)
index_name = "use-class-db"
embeddings = OpenAIEmbeddings(openai_api_key = OPENAI_API)
index = pinecone.Index(index_name)
k = 5
st.title("USC GPT - Find the perfect class")
class_time = st.slider(
"Filter Class Times:",
value=(t(11, 30), t(12, 45)))
# st.write("You're scheduled for:", class_time)
units = st.slider(
"Number of units",
1, 4,
value = (1, 4)
)
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
assistant = st.chat_message("assistant")
initial_message = "How can I help you today?"
def assistant_response(response):
message_placeholder = assistant.empty()
full_response = ""
assistant_response = response
# Simulate stream of response with milliseconds delay
for chunk in assistant_response.split():
full_response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
if "messages" not in st.session_state:
st.session_state.messages = []
assistant_response(initial_message)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What kind of class are you looking for?"):
# with st.chat_message("user"):
# st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
assistant_response("Yah I'm tired af right now boi")
# if prompt := st.chat_input("What kind of class are you looking for?"):
# # Display user message in chat message container
# with st.chat_message("user"):
# st.markdown(prompt)
# # Add user message to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
# response = filter_agent(prompt, OPENAI_API)
# query = response
# response = index.query(
# vector= embeddings.embed_query(query),
# # filter= build_filter(json),
# top_k=5,
# include_metadata=True
# )
# response = reranker(query, response)
# result_query = 'Original Query:' + query + 'Query Results:' + str(response)
# assistant_response = results_agent(result_query, OPENAI_API)
# if assistant_response:
# with st.chat_message("assistant"):
# message_placeholder = st.empty()
# full_response = ""
# # Simulate stream of response with milliseconds delay
# for chunk in assistant_response.split():
# full_response += chunk + " "
# time.sleep(0.05)
# # Add a blinking cursor to simulate typing
# message_placeholder.markdown(full_response + "▌")
# message_placeholder.markdown(full_response)
# # Add assistant response to chat history
# st.session_state.messages.append({"role": "assistant", "content": full_response})