import streamlit as st from datetime import time as t import time from operator import itemgetter import os import json import getpass import openai from langchain.vectorstores import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone from results import results_agent from filter import filter_agent from reranker import reranker from utils import build_filter, clean_pinecone from router import routing_agent OPENAI_API = st.secrets["OPENAI_API"] PINECONE_API = st.secrets["PINECONE_API"] openai.api_key = OPENAI_API pinecone.init( api_key= PINECONE_API, environment="gcp-starter" ) index_name = "use-class-db" embeddings = OpenAIEmbeddings(openai_api_key = OPENAI_API) index = pinecone.Index(index_name) k = 5 st.title("USC GPT - Find the perfect class") class_time = st.slider( "Filter Class Times:", value=(t(11, 30), t(12, 45))) units = st.slider( "Number of units", 1, 4, 4 ) days = st.multiselect("What days are you free?", options = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat"], default = None, placeholder = "Any day" ) assistant = st.chat_message("assistant") initial_message = "How can I help you today?" def get_rag_results(prompt): ''' 1. Remove filters from the prompt to optimize success of the RAG-based step. 2. Query the Pinecone DB and return the top 25 results based on cosine similarity 3. Rerank the results from vector DB using a BERT-based cross encoder ''' query = filter_agent(prompt, OPENAI_API) ##Get metadata filters days_filter = list() query_filter = { "start": {"$gte": str(class_time[0])}, "end": {"$lte": str(class_time[1])} } if units != "any": query_filter["units"] = str(int(units)) + ".0 units" if len(days) > 0: for i in range(len(days)): days_filter.append(days[i]) for j in range(i+1, len(days)): two_day = days[i] + ", " + days[j] days_filter.append(two_day) query_filter["days"] = {"$in": days_filter} ## Query the pinecone database response = index.query( vector = embeddings.embed_query(query), top_k = 45, filter = query_filter, include_metadata = True ) response, additional_metadata = clean_pinecone(response) response = reranker(query, response) # BERT cross encoder for ranking return response, additional_metadata if "messages" not in st.session_state: st.session_state.messages = [] with st.chat_message("assistant"): st.markdown(initial_message) st.session_state.messages.append({"role": "assistant", "content": initial_message}) if prompt := st.chat_input("What kind of class are you looking for?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" messages = [{"role": m["role"], "content": m["content"]} for m in st.session_state.messages] message_history = " ".join([message["content"] for message in messages]) route = routing_agent(prompt, OPENAI_API, message_history) if route == "1": ## Option for accessing Vector DB rag_response, additional_metadata = get_rag_results(prompt) result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response) + '\n Additional Class Times:' + str(additional_metadata) assistant_response = results_agent(result_query, OPENAI_API) else: ## Option if not accessing Database assistant_response = openai.ChatCompletion.create( model = "gpt-4", messages = [ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ] )["choices"][0]["message"]["content"] ## Display response regardless of route for chunk in assistant_response.split(): full_response += chunk + " " time.sleep(0.05) message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response})