Spaces:
Runtime error
Runtime error
File size: 17,123 Bytes
0ff7286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Optional, Tuple
from dataclasses import dataclass
import math
import torch
from torch import nn
import torch.nn.functional as F
import clip
from timm.models.vision_transformer import Block
import fairscale.nn.model_parallel.initialize as fs_init
from fairscale.nn.model_parallel.layers import (
ParallelEmbedding,
RowParallelLinear,
ColumnParallelLinear,
)
@dataclass
class ModelArgs:
dim: int = 512
n_layers: int = 8
n_heads: int = 8
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
norm_eps: float = 1e-5
max_batch_size: int = 32
max_seq_len: int = 2048
adapter_len: int = 10
adapter_layer: int = 30
cap_adapter_len: int = 10
cap_adapter_layer: int = 30
cap_vision_model: str = "ViT-L/14"
cap_vision_dim: int = 512
cap_vision_block: int = 2
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size()
self.head_dim = args.dim // args.n_heads
self.wq = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wk = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wv = ColumnParallelLinear(
args.dim,
args.n_heads * self.head_dim,
bias=False,
gather_output=False,
init_method=lambda x: x,
)
self.wo = RowParallelLinear(
args.n_heads * self.head_dim,
args.dim,
bias=False,
input_is_parallel=True,
init_method=lambda x: x,
)
self.cache_k = torch.zeros(
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
).cuda()
self.cache_v = torch.zeros(
(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)
).cuda()
self.gate = torch.nn.Parameter(torch.zeros(1))
self.cap_gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1))
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
if mode == 'instruct':
return self.forward_instruct(x, start_pos, freqs_cis, mask, adapter)
elif mode == 'caption':
return self.forward_caption(x, start_pos, freqs_cis, mask, adapter)
def forward_instruct(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
if adapter is not None:
adapter_len = adapter.shape[1]
adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)
adapter_k = adapter_k.transpose(1, 2)
adapter_v = adapter_v.transpose(1, 2)
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
if adapter is not None:
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
output = output + torch.matmul(adapter_scores, adapter_v)
output = output.transpose(
1, 2
).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
def forward_caption(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
if adapter is not None:
adapter_len = adapter.shape[1]
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
adapter_k = adapter_k.transpose(1, 2)
adapter_v = adapter_v.transpose(1, 2)
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
if adapter is not None:
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
adapter_scores = self.cap_gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
output = output + torch.matmul(adapter_scores, adapter_v)
output = output.transpose(
1, 2
).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = ColumnParallelLinear(
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
)
self.w2 = RowParallelLinear(
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
)
self.w3 = ColumnParallelLinear(
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None, mode='instruct'):
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, adapter, mode=mode)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = ParallelEmbedding(
params.vocab_size, params.dim, init_method=lambda x: x
)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = ColumnParallelLinear(
params.dim, params.vocab_size, bias=False, init_method=lambda x: x
)
self.freqs_cis = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
)
# Note: this is only a preview of multimodal LLaMA-Adapter
# and requires more efforts to decouple LLaMA-Adapter from LLaMA.
# instruct model
self.adapter_query = nn.Embedding(params.adapter_len * params.adapter_layer, params.dim)
self.adapter_len = params.adapter_len
self.adapter_layer = params.adapter_layer
# caption model
self.cap_adapter_query = nn.Embedding(params.cap_adapter_len * params.cap_adapter_layer, params.dim)
self.cap_adapter_len = params.cap_adapter_len
self.cap_adapter_layer = params.cap_adapter_layer
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode: str = 'instruct'):
if mode == 'instruct':
return self.forward_instruct(tokens, start_pos, mode)
elif mode == 'caption':
return self.forward_caption(tokens, start_pos, visual_tokens, mode)
def forward_instruct(self, tokens: torch.Tensor, start_pos: int, mode=None):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
adapter = self.adapter_query.weight.reshape(self.params.adapter_layer, self.params.adapter_len, self.params.dim).unsqueeze(1)
mask = None
if seqlen > 1:
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.layers[: -1 * self.params.adapter_layer]:
h = layer(h, start_pos, freqs_cis, mask)
layer_index = 0
for layer in self.layers[-1 * self.params.adapter_layer:]:
h = layer(h, start_pos, freqs_cis, mask, adapter[layer_index], mode=mode)
layer_index = layer_index + 1
h = self.norm(h)
output = self.output(h[:, -1, :]) # only compute last logits
return output.float()
def forward_caption(self, tokens: torch.Tensor, start_pos: int, visual_tokens: torch.Tensor = None, mode=None):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
adapter = self.cap_adapter_query.weight.reshape(self.params.cap_adapter_layer, self.params.cap_adapter_len, self.params.dim).unsqueeze(1)
mask = None
if seqlen > 1:
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.layers[: -1 * self.params.cap_adapter_layer]:
h = layer(h, start_pos, freqs_cis, mask)
layer_index = 0
for layer in self.layers[-1 * self.params.cap_adapter_layer:]:
adapter_per_layer = adapter[layer_index]
if visual_tokens is not None:
adapter_per_layer = adapter_per_layer + visual_tokens
h = layer(h, start_pos, freqs_cis, mask, adapter_per_layer, mode=mode)
layer_index = layer_index + 1
h = self.norm(h)
output = self.output(h[:, -1, :]) # only compute last logits
return output.float()
class VisionModel(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.clip, self.clip_transform = clip.load(params.cap_vision_model)
self.clip.float()
for param in self.clip.parameters():
param.requires_grad = False
self.clip_proj = nn.Linear(self.clip.visual.output_dim, params.cap_vision_dim)
self.clip_proj_norm = nn.LayerNorm(params.cap_vision_dim)
self.visual_query = nn.Embedding(params.cap_adapter_len, params.cap_vision_dim)
self.visual_blocks = nn.ModuleList([
Block(params.cap_vision_dim, 16, 4, qkv_bias=True, qk_scale=None, norm_layer=nn.LayerNorm)
for i in range(params.cap_vision_block)])
self.visual_proj = nn.Linear(params.cap_vision_dim, params.dim)
self.visual_proj_norm = nn.LayerNorm(params.dim)
def clip_encode_image(self, x):
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.clip.visual.positional_embedding.to(x.dtype)
x = self.clip.visual.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.visual.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.clip.visual.ln_post(x[:, :, :])
if self.clip.visual.proj is not None:
x = x @ self.clip.visual.proj
return x
def forward(self, imgs):
x = [self.clip_transform(img) for img in imgs]
x = torch.stack(x, dim=0).to(self.visual_query.weight.device)
_bsz = x.shape[0]
visual_feats = self.clip_encode_image(x).half()
visual_feats = self.clip_proj_norm(self.clip_proj(visual_feats))
visual_query = self.visual_query.weight.unsqueeze(0).repeat(_bsz, 1, 1)
visual_query = torch.cat([visual_query, visual_feats], dim=1)
for block in self.visual_blocks:
visual_query = block(visual_query)
visual_query = visual_query[:, :self.params.cap_adapter_len, :]
visual_query = self.visual_proj(visual_query)
visual_query = self.visual_proj_norm(visual_query)
return visual_query |