paragon-analytics commited on
Commit
e2eab41
·
verified ·
1 Parent(s): 2f03c6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -19
app.py CHANGED
@@ -7,20 +7,28 @@ import numpy as np
7
  import matplotlib.pyplot as plt
8
 
9
  # load the model from disk
10
- loaded_model = pickle.load(open("xgb_h.pkl", 'rb'))
11
 
12
  # Setup SHAP
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
 
15
  # Create the main function for server
16
- def main_func(Generation,Tenure,Engagement, LearningDevelopment,WorkEnvironment, RewardsBenefits, EmployeeWellBeing):
17
- new_row = pd.DataFrame.from_dict({'Generation': Generation,
18
- 'Tenure':Tenure,
19
- 'Engagement':Engagement,
20
- 'LearningDevelopment':LearningDevelopment,
21
- 'WorkEnvironment':WorkEnvironment,
22
- 'RewardsBenefits':RewardsBenefits,
23
- 'EmployeeWellBeing':EmployeeWellBeing}, orient = 'index').transpose()
 
 
 
 
 
 
 
 
24
 
25
  prob = loaded_model.predict_proba(new_row)
26
 
@@ -55,13 +63,20 @@ with gr.Blocks(title=title) as demo:
55
  gr.Markdown("""---""")
56
  with gr.Row():
57
  with gr.Column():
58
- Generation = gr.Slider(label="Generation", minimum=1, maximum=6, value=4, step=1)
59
- Tenure = gr.Slider(label="Tenure Level", minimum=1, maximum=8, value=4, step=1)
60
- Engagement = gr.Slider(label="Engagement Score", minimum=1, maximum=5, value=4, step=.1)
61
- LearningDevelopment = gr.Slider(label="LearningDevelopment Score", minimum=1, maximum=5, value=4, step=.1)
62
- WorkEnvironment = gr.Slider(label="WorkEnvironment Score", minimum=1, maximum=5, value=4, step=.1)
63
- RewardsBenefits = gr.Slider(label="RewardsBenefits Score", minimum=1, maximum=5, value=4, step=.1)
64
- EmployeeWellBeing = gr.Slider(label="EmployeeWellBeing Score", minimum=1, maximum=5, value=4, step=.1)
 
 
 
 
 
 
 
65
  submit_btn = gr.Button("Analyze")
66
  with gr.Column(visible=True,scale=1, min_width=600) as output_col:
67
  label = gr.Label(label = "Predicted Label")
@@ -69,13 +84,13 @@ with gr.Blocks(title=title) as demo:
69
 
70
  submit_btn.click(
71
  main_func,
72
- [Generation, Tenure,Engagement,LearningDevelopment,WorkEnvironment,RewardsBenefits,EmployeeWellBeing],
73
  [label,local_plot], api_name="Employee_Turnover"
74
  )
75
 
76
  gr.Markdown("### Click on any of the examples below to see how it works:")
77
- gr.Examples([[3,4,4,4,4,5,5], [4,5,4,5,4,4,5]],
78
- [Generation,Tenure,Engagement,LearningDevelopment,WorkEnvironment,RewardsBenefits,EmployeeWellBeing],
79
  [label,local_plot], main_func, cache_examples=True)
80
 
81
  demo.launch()
 
7
  import matplotlib.pyplot as plt
8
 
9
  # load the model from disk
10
+ loaded_model = pickle.load(open("heart_ba4522_example.pkl", 'rb'))
11
 
12
  # Setup SHAP
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
 
15
  # Create the main function for server
16
+ def main_func(age, sex, cp, trestbps, chol, fbs, restecg, thalach,
17
+ exang, oldpeak, slope, ca, thal):
18
+ new_row = pd.DataFrame.from_dict({'age': age,
19
+ 'sex':sex,
20
+ 'cp':cp,
21
+ 'trestbps':trestbps,
22
+ 'chol':chol,
23
+ 'fbs':fbs,
24
+ 'restecg':restecg,
25
+ 'thalach':thalach,
26
+ 'exang':exang,
27
+ 'oldpeak':oldpeak,
28
+ 'slope':slope,
29
+ 'ca':ca,
30
+ 'thal':thal
31
+ }, orient = 'index').transpose()
32
 
33
  prob = loaded_model.predict_proba(new_row)
34
 
 
63
  gr.Markdown("""---""")
64
  with gr.Row():
65
  with gr.Column():
66
+ age = gr.Slider(label="age", minimum=1, maximum=6, value=4, step=1)
67
+ sex = gr.Slider(label="sex", minimum=1, maximum=8, value=4, step=1)
68
+ cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=.1)
69
+ trestbps = gr.Slider(label="trestbps Score", minimum=1, maximum=5, value=4, step=.1)
70
+ chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=.1)
71
+ fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=.1)
72
+ restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=.1)
73
+ thalach = gr.Slider(label="thalach Score", minimum=1, maximum=5, value=4, step=.1)
74
+ exang = gr.Slider(label="exang Score", minimum=1, maximum=5, value=4, step=.1)
75
+ oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=.1)
76
+ slope = gr.Slider(label="slope Score", minimum=1, maximum=5, value=4, step=.1)
77
+ ca = gr.Slider(label="ca Score", minimum=1, maximum=5, value=4, step=.1)
78
+ thal = gr.Slider(label="thal Score", minimum=1, maximum=5, value=4, step=.1)
79
+
80
  submit_btn = gr.Button("Analyze")
81
  with gr.Column(visible=True,scale=1, min_width=600) as output_col:
82
  label = gr.Label(label = "Predicted Label")
 
84
 
85
  submit_btn.click(
86
  main_func,
87
+ [age, sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal],
88
  [label,local_plot], api_name="Employee_Turnover"
89
  )
90
 
91
  gr.Markdown("### Click on any of the examples below to see how it works:")
92
+ gr.Examples([[33,0,1,100,230,1,1,150,0,.9,2,1,6], [39,1,0,170,200,1,1,150,0,1.4,2,1,6]],
93
+ [age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal],
94
  [label,local_plot], main_func, cache_examples=True)
95
 
96
  demo.launch()