Beladiaamy commited on
Commit
04010a4
·
verified ·
1 Parent(s): 8e6acc8

Upload 6 files

Browse files
Files changed (6) hide show
  1. README (1).md +13 -0
  2. Train.csv +0 -0
  3. app (2).py +87 -0
  4. db_xgb.pkl +3 -0
  5. gitattributes (1) +57 -0
  6. requirements (2).txt +8 -0
README (1).md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Predicting Diabetes
3
+ emoji: 📈
4
+ colorFrom: blue
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.4
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Train.csv ADDED
The diff for this file is too large to render. See raw diff
 
app (2).py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import pandas as pd
3
+ import shap
4
+ from shap.plots._force_matplotlib import draw_additive_plot
5
+ import gradio as gr
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+ # load the model from disk
10
+ loaded_model = pickle.load(open("db_xgb.pkl", 'rb'))
11
+
12
+ # Setup SHAP
13
+ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
+
15
+ # Create the main function for server
16
+ def main_func(Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income):
17
+ new_row = pd.DataFrame.from_dict({'Diabetes': Diabetes, 'HighBP': HighBP, 'HighChol': HighChol, 'CholCheck': CholCheck, 'BMI': BMI, 'Smoker': Smoker, 'Stroke': Stroke, 'HeartDiseaseorAttack': HeartDiseaseorAttack, 'PhysActivity':PhysActivity, 'Fruits':Fruits, 'Veggies':Veggies, 'HvyAlcoholConsump': HvyAlcoholConsump, 'AnyHealthcare': AnyHealthcare, 'NoDocbcCost': NoDocbcCost, 'GenHlth': GenHlth, 'MentHlth': MentHlth, 'PhysHlth': PhysHlth, 'DiffWalk': DiffWalk, 'Sex': Sex, 'Age': Age, 'Education': Education, 'Income': Income},
18
+ orient = 'index').transpose()
19
+
20
+ prob = loaded_model.predict_proba(new_row)
21
+
22
+ shap_values = explainer(new_row)
23
+ # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
24
+ # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
25
+ plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
26
+
27
+ plt.tight_layout()
28
+ local_plot = plt.gcf()
29
+ plt.close()
30
+
31
+ return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
32
+
33
+ # Create the UI
34
+ title = "**Diabetes Predictor & Interpreter** 🪐"
35
+ description1 = """This app takes info from subjects and predicts their diabetes likelihood. Do not use for medical diagnosis."""
36
+
37
+ description2 = """
38
+ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞
39
+ """
40
+
41
+ with gr.Blocks(title=title) as demo:
42
+ gr.Markdown(f"## {title}")
43
+ gr.Markdown(description1)
44
+ gr.Markdown("""---""")
45
+ gr.Markdown(description2)
46
+ gr.Markdown("""---""")
47
+
48
+
49
+ Diabetes = gr.Slider(label="Diabetes Score", minimum = 0, maximum = 1, value = 1, step = 1)
50
+ HighBP = gr.Slider(label="BP Score", minimum = 0, maximum = 1, value = 1, step = 1)
51
+ HighChol = gr.Slider(label="Cholesterol Score", minimum = 0, maximum = 1, value = 1, step = 1)
52
+ CholCheck = gr.Slider(label="CholCheck Score", minimum = 0, maximum = 1, value = 1, step = 1)
53
+ BMI = gr.Number(label="BMI Score", minimum = 0, maximum = 98, value = 1)
54
+ Smoker = gr.Slider(label="Smoker Score", minimum = 0, maximum = 1, value = 1, step = 1)
55
+ Stroke = gr.Slider(label="Stroke Score", minimum = 0, maximum = 1, value = 1, step = 1)
56
+ HeartDiseaseorAttack = gr.Slider(label="HeartDiseaseorAttack Score", minimum = 0, maximum = 1, value = 1, step = 1)
57
+ PhysActivity = gr.Slider(label="Physical Activity Score", minimum = 0, maximum = 1, value = 1, step = 1))
58
+ Fruits = gr.Slider(label="Fruits Score", minimum = 0, maximum = 1, value = 1, step = 1)
59
+ Veggies = gr.Slider(label="Veggies Score", minimum = 0, maximum = 1, value = 1, step = 1)
60
+ HvyAlcoholConsump = gr.Slider(label="Alcohol Consumption Score", minimum = 0, maximum = 1, value = 1, step = 1)
61
+ AnyHealthcare = gr.Slider(label="AnyHealthcare Score", minimum = 0, maximum = 1, value = 1, step = 1)
62
+ NoDocbcCost = gr.Slider(label="NoDocbcCost Score", minimum = 0, maximum = 1, value = 1, step = 1)
63
+ GenHlth = gr.Slider(label="GenHlth Score", minimum = 1, maximum = 5, value = 1, step = 1)
64
+ PhysHealth = gr.Number(label="PhysHealth Score", minimum = 0, maximum = 30, value=1)
65
+ MentHlth = gr.Number(label="MentHlth Score", minimum = 0, maximum = 30, value = 1, step = 1)
66
+ DiffWalk = gr.Number(label="DiffWalk Score", minimum = 0, maximum = 1, value = 1, step = 1)
67
+ Sex = gr.Slider(label="sex Score", minimum = 0, maximum = 1, value = 1, step = 1)
68
+ Age = gr.Number(label="age Score", minimum = 1, maximum = 100, value = 1)
69
+ Education = gr.Slider(label="Education Score", minimum = 1, maximum = 6, value = 1, step = 1)
70
+ Income = gr.Slider(label="Income Score", minimum = 1, maximum = 8, value = 1, step = 1)
71
+
72
+ submit_btn = gr.Button("Analyze")
73
+
74
+ with gr.Column(visible=True) as output_col:
75
+ label = gr.Label(label = "Predicted Label")
76
+ local_plot = gr.Plot(label = 'Shap:')
77
+
78
+ submit_btn.click(
79
+ main_func,
80
+ [Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income],
81
+ [label,local_plot], api_name="Diabetes_Predictor"
82
+ )
83
+
84
+ gr.Markdown("### Click on any of the examples below to see how it works:")
85
+ gr.Examples([[0,0,1,0,22,0,0,0,1,1,1,0,0,1,3,25,23,1,1,21,5,3], [1,1,1,1,30,1,1,1,0,0,0,1,1,0,2,20,23,0,0,21,3,2]], [Diabetes, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income], [label,local_plot], main_func, cache_examples=True)
86
+
87
+ demo.launch()
db_xgb.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b3887bfabd68f0a7d0be65a92179cd06d50b1f6ab6704b1634a7572c49e731a
3
+ size 401476
gitattributes (1) ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
56
+ diabetes_012_health_indicators_BRFSS2015.csv filter=lfs diff=lfs merge=lfs -text
57
+ diabetes_binary_health_indicators_BRFSS2015.csv filter=lfs diff=lfs merge=lfs -text
requirements (2).txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio==3.41.2
2
+ pandas
3
+ scikit-learn
4
+ shap
5
+ xgboost
6
+ matplotlib
7
+ numpy
8
+ streamlit