Update app.py
Browse files
app.py
CHANGED
@@ -65,11 +65,56 @@ def map_DiffWalk(value):
|
|
65 |
mapping = {'No': 0, 'Yes': 1}
|
66 |
return mapping[value]
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Create the main function for server
|
71 |
def main_func(HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income):
|
72 |
-
new_row = pd.DataFrame.from_dict({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
prob = loaded_model.predict_proba(new_row)
|
|
|
65 |
mapping = {'No': 0, 'Yes': 1}
|
66 |
return mapping[value]
|
67 |
|
68 |
+
def map_gender(value):
|
69 |
+
mapping = {'Female': 0, 'Male': 1}
|
70 |
+
return mapping[value]
|
71 |
+
|
72 |
+
def map_education(value):
|
73 |
+
mapping = {
|
74 |
+
"Never attended school": 0,
|
75 |
+
"Grades 1-8": 1,
|
76 |
+
"Grades 9-11": 2,
|
77 |
+
"Grade 12 or GED": 3,
|
78 |
+
"College 1-3 years": 4,
|
79 |
+
"College 4+ years": 5
|
80 |
+
}
|
81 |
+
return mapping[value]
|
82 |
|
83 |
+
def map_income(value):
|
84 |
+
mapping = {
|
85 |
+
"< $10,000": 0,
|
86 |
+
"$10,000 - $24,999": 1,
|
87 |
+
"$25,000 - $49,999": 2,
|
88 |
+
"$50,000 - $74,999": 3,
|
89 |
+
"$75,000 or more": 4
|
90 |
+
}
|
91 |
+
return mapping[value]
|
92 |
|
93 |
# Create the main function for server
|
94 |
def main_func(HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, HeartDiseaseorAttack, PhysActivity, Fruits, Veggies, HvyAlcoholConsump, AnyHealthcare, NoDocbcCost, GenHlth, MentHlth, PhysHlth, DiffWalk, Sex, Age, Education, Income):
|
95 |
+
new_row = pd.DataFrame.from_dict({
|
96 |
+
'HighBP': map_yes_no(HighBP),
|
97 |
+
'HighChol': map_yes_no(HighChol),
|
98 |
+
'CholCheck': map_yes_no(CholCheck),
|
99 |
+
'BMI': BMI,
|
100 |
+
'Smoker': map_yes_no(Smoker),
|
101 |
+
'Stroke': map_yes_no(Stroke),
|
102 |
+
'HeartDiseaseorAttack': map_yes_no(HeartDiseaseorAttack),
|
103 |
+
'PhysActivity': map_yes_no(PhysActivity),
|
104 |
+
'Fruits': map_yes_no(Fruits),
|
105 |
+
'Veggies': map_yes_no(Veggies),
|
106 |
+
'HvyAlcoholConsump': map_yes_no(HvyAlcoholConsump),
|
107 |
+
'AnyHealthcare': map_yes_no(AnyHealthcare),
|
108 |
+
'NoDocbcCost': map_yes_no(NoDocbcCost),
|
109 |
+
'GenHlth': GenHlth,
|
110 |
+
'MentHlth': MentHlth,
|
111 |
+
'PhysHlth': PhysHlth,
|
112 |
+
'DiffWalk': map_yes_no(DiffWalk),
|
113 |
+
'Sex': map_gender(Sex),
|
114 |
+
'Age': Age,
|
115 |
+
'Education': map_education(Education),
|
116 |
+
'Income': map_income(Income)
|
117 |
+
}, orient='index').transpose()
|
118 |
|
119 |
|
120 |
prob = loaded_model.predict_proba(new_row)
|