|
import pickle |
|
import pandas as pd |
|
import shap |
|
from shap.plots._force_matplotlib import draw_additive_plot |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
loaded_model = pickle.load(open("glioma_xgb.pkl", 'rb')) |
|
|
|
|
|
explainer = shap.Explainer(loaded_model) |
|
|
|
|
|
def main_func(Gender, Age_at_diagnosis, IDH1, TP53, ATRX, PTEN, EGFR, CIC, MUC16, PIK3CA, NF1, PIK3R1, FUBP1, RB1, NOTCH1, BCOR, CSMD3, SMARCA4, GRIN2A, IDH2, FAT4, PDGFRA): |
|
new_row = pd.DataFrame.from_dict({'Gender':Gender, |
|
'Age_at_diagnosis':Age_at_diagnosis,'IDH1':IDH1,'TP53':TP53, |
|
'ATRX':ATRX, 'PTEN':PTEN,'EGFR':EGFR,'CIC':CIC, |
|
'MUC16':MUC16,'PIK3CA':PIK3CA,'NF1':NF1,'PIK3R1':PIK3R1, 'FUBP1': FUBP1, 'RB1': RB1, 'NOTCH1': NOTCH1, |
|
'BCOR': BCOR, 'CSMD3': CSMD3, 'SMARCA4': SMARCA4, 'GRIN2A': GRIN2A, 'IDH2': IDH2, 'FAT4': FAT4, 'PDGFRA': PDGFRA}, |
|
orient = 'index').transpose() |
|
|
|
prob = loaded_model.predict_proba(new_row) |
|
|
|
shap_values = explainer(new_row) |
|
|
|
|
|
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) |
|
|
|
plt.tight_layout() |
|
local_plot = plt.gcf() |
|
plt.close() |
|
|
|
return {"Chance of Having GBM Tumor": 1-float(prob[0][0]), "Chance of Having LGG Tumor": float(prob[0][0])}, local_plot |
|
|
|
|
|
title = "**Glioma Predictor & Interpreter** πͺ" |
|
description1 = """This app takes info from subjects and predicts the severity of their brain tumor (LGG or GBM). Do not use for medical diagnosis.""" |
|
|
|
description2 = """ |
|
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€ |
|
""" |
|
|
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(description1) |
|
gr.Markdown("""---""") |
|
gr.Markdown(description2) |
|
gr.Markdown("""---""") |
|
|
|
with gr.Row(): |
|
Gender = gr.Radio(["Female", "Male"], label="Gender", type = "index") |
|
Age_at_diagnosis = gr.Number(label="Age at Diagnosis") |
|
with gr.Row(): |
|
IDH1 = gr.Radio(["No", "Yes"], label="IDH1 Mutation", type="index") |
|
TP53 = gr.Radio(["No", "Yes"], label="TP53 Mutation", type="index") |
|
ATRX = gr.Radio(["No", "Yes"], label="ATRX Mutation", type="index") |
|
with gr.Row(): |
|
PTEN = gr.Radio(["No", "Yes"], label="PTEN Mutation", type="index") |
|
EGFR = gr.Radio(["No", "Yes"], label="EGFR Mutation", type="index") |
|
CIC = gr.Radio(["No", "Yes"], label="CIC Mutation", type="index") |
|
with gr.Row(): |
|
MUC16 = gr.Radio(["No", "Yes"], label="MUC16 Mutation", type="index") |
|
PIK3CA = gr.Radio(["No", "Yes"], label="PIK3CA Mutation", type="index") |
|
NF1 = gr.Radio(["No", "Yes"], label="NF1 Mutation", type="index") |
|
with gr.Row(): |
|
PIK3R1 = gr.Radio(["No", "Yes"], label="PIK3R1 Mutation", type="index") |
|
FUBP1 = gr.Radio(["No", "Yes"], label="FUBP1 Mutation", type="index") |
|
RB1 = gr.Radio(["No", "Yes"], label="RB1 Mutation", type="index") |
|
with gr.Row(): |
|
NOTCH1 = gr.Radio(["No", "Yes"], label="NOTCH1 Mutation", type="index") |
|
BCOR = gr.Radio(["No", "Yes"], label="BCOR Mutation", type="index") |
|
CSMD3 = gr.Radio(["No", "Yes"], label="CSMD3 Mutation", type="index") |
|
with gr.Row(): |
|
SMARCA4 = gr.Radio(["No", "Yes"], label="SMAECA4 Mutation", type="index") |
|
GRIN2A = gr.Radio(["No", "Yes"], label="GRIN2A Mutation", type="index") |
|
IDH2 = gr.Radio(["No", "Yes"], label="IDH2 Mutation", type="index") |
|
FAT4 = gr.Radio(["No", "Yes"], label="FAT4 Mutation", type="index") |
|
PDGFRA = gr.Radio(["No", "Yes"], label="PDGFRA Mutation", type="index") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
submit_btn = gr.Button("Analyze") |
|
|
|
with gr.Column(visible=True) as output_col: |
|
label = gr.Label(label = "Predicted Label") |
|
local_plot = gr.Plot(label = 'Grade:') |
|
|
|
submit_btn.click( |
|
main_func, |
|
[Gender, Age_at_diagnosis, IDH1, TP53, ATRX, PTEN, EGFR, CIC, MUC16, PIK3CA, NF1, PIK3R1, FUBP1, RB1, NOTCH1, BCOR, CSMD3, SMARCA4, GRIN2A, IDH2, FAT4, PDGFRA], |
|
[label,local_plot], api_name="Glioma_Predictor" |
|
) |
|
|
|
gr.Markdown("### Click on any of the examples below to see how it works:") |
|
gr.Examples([["Male",24,"Yes","No","Yes","Yes","Yes","No","Yes","Yes","Yes","Yes","Yes","No","No","No","No","Yes","No","Yes","No","Yes"], ["Male",70,"No","No","No","No","No","No","No","No","No","Yes","No","Yes","No","No","No","No","No","No","No", "No"]], [Gender, Age_at_diagnosis, IDH1, TP53, ATRX, PTEN, EGFR, CIC, MUC16, PIK3CA, NF1, PIK3R1, FUBP1, RB1, NOTCH1, BCOR, CSMD3, SMARCA4, GRIN2A, IDH2, FAT4, PDGFRA], [label,local_plot], main_func, cache_examples=True) |
|
|
|
demo.launch() |