Spaces:
Build error
Build error
import pickle | |
import pandas as pd | |
import shap | |
from shap.plots._force_matplotlib import draw_additive_plot | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# load the data from disk | |
df = pd.read_csv("heart.csv").sample(frac = 1, random_state=1) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
# Create the main function for server | |
def main_func(age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall,output): | |
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, | |
'cp':cp,'trtbps':trtbps,'chol':chol,'chol':chol,'fbs':fbs, | |
'restecg':restecg,'thalachh':thalachh,'exng':exng, | |
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall,'output':output}).transpose() | |
prob = df.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
plt.tight_layout() | |
local_plot = plt.gcf() | |
plt.close() | |
return {"High Risk": float(prob[0][0]), "Low Risk": 1-float(prob[0][0])}, local_plot | |
# Create the UI | |
title = "**Employee Turnover Predictor & Interpreter** 🪐" | |
description1 = """ | |
This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) and predicts whether the employee intends to stay with the employer or leave. There are two outputs from the app: 1- the predicted probability of stay or leave, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the stay/ leave prediction.✨ | |
""" | |
description2 = """ | |
To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. 🤞 | |
""" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"## {title}") | |
# gr.Markdown("""""") | |
gr.Markdown(description1) | |
gr.Markdown("""---""") | |
gr.Markdown(description2) | |
gr.Markdown("""---""") | |
ValueDiversity = gr.Slider(label="ValueDiversity Score", minimum=1, maximum=5, value=4, step=1) | |
AdequateResources = gr.Slider(label="AdequateResources Score", minimum=1, maximum=5, value=4, step=1) | |
Voice = gr.Slider(label="Voice Score", minimum=1, maximum=5, value=4, step=1) | |
GrowthAdvancement = gr.Slider(label="GrowthAdvancement Score", minimum=1, maximum=5, value=4, step=1) | |
Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=1) | |
WorkLifeBalance = gr.Slider(label="WorkLifeBalance Score", minimum=1, maximum=5, value=4, step=1) | |
submit_btn = gr.Button("Analyze") | |
with gr.Column(visible=True) as output_col: | |
label = gr.Label(label = "Predicted Label") | |
local_plot = gr.Plot(label = 'Shap:') | |
submit_btn.click( | |
main_func, | |
[ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], | |
[label,local_plot], api_name="Employee_Turnover" | |
) | |
gr.Markdown("### Click on any of the examples below to see how it works:") | |
gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]], [ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], [label,local_plot], main_func, cache_examples=True) | |
demo.launch() |