|
import pickle |
|
import pandas as pd |
|
import shap |
|
from shap.plots._force_matplotlib import draw_additive_plot |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb')) |
|
|
|
|
|
explainer = shap.Explainer(loaded_model) |
|
|
|
|
|
def main_func(Target, Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment): |
|
new_row = pd.DataFrame.from_dict({'Target':Target, 'Admission grade':Admission_grade,'Curricular units 2nd sem (grade)':Curricular_units_2nd_sem_grade, |
|
'Previous qualifications':Previous_qualifications,'Curricular units 1st sem (grade)':Curricular_units_1st_sem_grade, 'Course':Course,'Curricular units 2nd sem (approved)':Curricular_units_2nd_sem_approved, |
|
'Age at enrollment':Age_at_enrollmentenrollment}).transpose() |
|
|
|
prob = loaded_model.predict_proba(new_row) |
|
|
|
shap_values = explainer(new_row) |
|
|
|
|
|
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) |
|
|
|
plt.tight_layout() |
|
local_plot = plt.gcf() |
|
plt.close() |
|
|
|
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot |
|
|
|
|
|
title = "**Heart Attack Predictor & Interpreter** πͺ" |
|
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" |
|
|
|
description2 = """ |
|
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€ |
|
""" |
|
|
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(description1) |
|
gr.Markdown("""---""") |
|
gr.Markdown(description2) |
|
gr.Markdown("""---""") |
|
|
|
Curricular_units_2nd_sem_grade = gr.Number(label="Curricular units 2nd sem (grade)", value=40) |
|
Admission_grade = gr.Slider(label="Admission grade", minimum=0, maximum=1, value=1, step=1) |
|
Previous_qualifications = gr.Slider(label="Previous qualifications", minimum=1, maximum=5, value=4, step=1) |
|
Curricular_units_1st_sem_grade = gr.Slider(label="Curricular units 1st sem (grade)", minimum=1, maximum=5, value=4, step=1) |
|
Course = gr.Slider(label="Course", minimum=1, maximum=5, value=4, step=1) |
|
Curricular_units_2nd_sem_approved = gr.Slider(label="Curricular units 2nd sem (approved)", minimum=1, maximum=5, value=4, step=1) |
|
Age_at_enrollment = gr.Slider(label="Age_at_enrollment", minimum=1, maximum=5, value=4, step=1) |
|
|
|
submit_btn = gr.Button("Analyze") |
|
|
|
with gr.Column(visible=True) as output_col: |
|
label = gr.Label(label = "Predicted Label") |
|
local_plot = gr.Plot(label = 'Shap:') |
|
|
|
submit_btn.click( |
|
main_func, |
|
[Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment], |
|
[label,local_plot], api_name="Dropout_Predictor" |
|
) |
|
|
|
gr.Markdown("### Click on any of the examples below to see how it works:") |
|
gr.Examples([[24,0,4,4,5,5,4,4,5,5,1,2,3], [24,0,4,4,5,3,3,2,1,1,1,2,3]], [Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment], [label,local_plot], main_func, cache_examples=True) |
|
|
|
demo.launch() |