jjp7um commited on
Commit
4f67e80
·
verified ·
1 Parent(s): 4e34add

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -18
app.py CHANGED
@@ -14,8 +14,8 @@ explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
 
15
  # Create the main function for server
16
  def main_func(Target, Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Curricular_units_2nd_sem_approved, Age_at_enrollment):
17
- new_row = pd.DataFrame.from_dict({'Target':Target,'Curricular units 2nd sem (grade)':Curricular_units_2nd_sem_grade,
18
- 'Previous qualifications':Previous_qualifications,'Curricular units 1st sem (grade)':Curricular_units_1st_sem_grade,'Curricular units 2nd sem (approved)':Curricular_units_2nd_sem_approved,
19
  'Age at enrollment':Age_at_enrollmentenrollment}).transpose()
20
 
21
  prob = loaded_model.predict_proba(new_row)
@@ -46,21 +46,13 @@ with gr.Blocks(title=title) as demo:
46
  gr.Markdown(description2)
47
  gr.Markdown("""---""")
48
 
49
- age = gr.Number(label="age Score", value=40)
50
- sex = gr.Slider(label="sex Score", minimum=0, maximum=1, value=1, step=1)
51
- cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1)
52
- trtbps = gr.Slider(label="trtbps Score", minimum=1, maximum=5, value=4, step=1)
53
- chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1)
54
- fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1)
55
-
56
- restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1)
57
- thalachh = gr.Slider(label="thalachh Score", minimum=1, maximum=5, value=4, step=1)
58
-
59
- exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1)
60
- oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1)
61
- slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1)
62
- caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1)
63
- thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1)
64
 
65
  submit_btn = gr.Button("Analyze")
66
 
@@ -71,7 +63,7 @@ with gr.Blocks(title=title) as demo:
71
  submit_btn.click(
72
  main_func,
73
  [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
74
- [label,local_plot], api_name="Heart_Predictor"
75
  )
76
 
77
  gr.Markdown("### Click on any of the examples below to see how it works:")
 
14
 
15
  # Create the main function for server
16
  def main_func(Target, Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Curricular_units_2nd_sem_approved, Age_at_enrollment):
17
+ new_row = pd.DataFrame.from_dict({'Target':Target, 'Admission grade':Admission_grade,'Curricular units 2nd sem (grade)':Curricular_units_2nd_sem_grade,
18
+ 'Previous qualifications':Previous_qualifications,'Curricular units 1st sem (grade)':Curricular_units_1st_sem_grade, 'Course':Course,'Curricular units 2nd sem (approved)':Curricular_units_2nd_sem_approved,
19
  'Age at enrollment':Age_at_enrollmentenrollment}).transpose()
20
 
21
  prob = loaded_model.predict_proba(new_row)
 
46
  gr.Markdown(description2)
47
  gr.Markdown("""---""")
48
 
49
+ Curricular_units_2nd_sem_grade = gr.Number(label="Curricular units 2nd sem (grade)", value=40)
50
+ Admission_grade = gr.Slider(label="Admission grade", minimum=0, maximum=1, value=1, step=1)
51
+ Previous_qualifications = gr.Slider(label="Previous qualifications", minimum=1, maximum=5, value=4, step=1)
52
+ Curricular_units_1st_sem_grade = gr.Slider(label="Curricular units 1st sem (grade)", minimum=1, maximum=5, value=4, step=1)
53
+ Course = gr.Slider(label="Course", minimum=1, maximum=5, value=4, step=1)
54
+ Curricular_units_2nd_sem_approved = gr.Slider(label="Curricular units 2nd sem (approved)", minimum=1, maximum=5, value=4, step=1)
55
+ Age at enrollment = gr.Slider(label="Age_at_enrollmentenrollment", minimum=1, maximum=5, value=4, step=1)
 
 
 
 
 
 
 
 
56
 
57
  submit_btn = gr.Button("Analyze")
58
 
 
63
  submit_btn.click(
64
  main_func,
65
  [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
66
+ [label,local_plot], api_name="Dropout_Predictor"
67
  )
68
 
69
  gr.Markdown("### Click on any of the examples below to see how it works:")