jjp7um commited on
Commit
8411314
1 Parent(s): 9bff147

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -12
app.py CHANGED
@@ -13,10 +13,10 @@ loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb'))
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
 
15
  # Create the main function for server
16
- def main_func(Target, Admission grade, Curricular units 2nd sem (grade), Previous qualification (grade), Curricular units 1st sem (grade), Course, Curricular units 2nd sem (approved), Age at enrollment):
17
- new_row = pd.DataFrame.from_dict({'Target':Target,'Admission grade':AdmissionGrade,
18
- 'Curricular units 2nd sem (grade)':CurricularUnits2ndSemGrade,'Previous qualification (grade)':PreviousQualificationGrade,'Curricular units 1st sem (grade)':CurricularUnits1stSemGrade,
19
- 'Course':Course,'Curricular units 2nd sem (approved)':CurricularUnits2ndSemApproved,'Age at enrollment':AgeAtEnrollment,
20
  orient = 'index').transpose()
21
 
22
  prob = loaded_model.predict_proba(new_row)
@@ -49,12 +49,13 @@ with gr.Blocks(title=title) as demo:
49
  with gr.Row():
50
  with gr.Column():
51
  Target = gr.Number(label="Target Score", value=40)
52
- AdmissionGrade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1)
53
- PreviousQualificationGrade = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1)
54
- CurricularUnits1stSemGrade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1)
55
- Course = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1)
56
- CurricularUnits2ndSemApproved = gr.Slider(label="CurricularUnits2ndSemApproved Score", minimum=1, maximum=5, value=4, step=1)
57
- AgeAtEnrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1)
 
58
  submit_btn = gr.Button("Analyze")
59
 
60
  with gr.Column(visible=True) as output_col:
@@ -63,11 +64,12 @@ with gr.Blocks(title=title) as demo:
63
 
64
  submit_btn.click(
65
  main_func,
66
- [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment],
67
  [label,local_plot], api_name="Graduation_Predictor"
68
  )
69
 
70
  gr.Markdown("### Click on any of the examples below to see how it works:")
71
- gr.Examples([['Graduate',119.6,13.000000,122.0,9773,5,18], [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment], [label,local_plot], main_func, cache_examples=True)
 
72
 
73
  demo.launch()
 
13
  explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
14
 
15
  # Create the main function for server
16
+ def main_func(Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment):
17
+ new_row = pd.DataFrame.from_dict({'Target':Target,'Admission_Grade':Admission_Grade,
18
+ '2nd_Sem_Grades':2nd_Sem_Grades,'Previous_Qualification_Grade':Previous_Qualification_Grade,'1st_Sem_Grades':1st_Sem_Grades,
19
+ 'Course':Course,'2nd_Sem_Units_Approved':2nd_Sem_Units_Approved,'Age_at_Enrollment':Age_at_Enrollment},
20
  orient = 'index').transpose()
21
 
22
  prob = loaded_model.predict_proba(new_row)
 
49
  with gr.Row():
50
  with gr.Column():
51
  Target = gr.Number(label="Target Score", value=40)
52
+ Admission_Grade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1)
53
+ 2nd_Sem_Grades = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1)
54
+ Previous_Qualification_Grade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1)
55
+ 1st_Sem_Grades = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1)
56
+ Course = gr.Slider(label="Course", minimum=1, maximum=5, value=4, step=1)
57
+ 2nd_Sem_Units_Approved = gr.Slider(label="2nd_Sem_Units_Approved", minimum=1, maximum=5, value=4, step=1)
58
+ Age_at_Enrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1)
59
  submit_btn = gr.Button("Analyze")
60
 
61
  with gr.Column(visible=True) as output_col:
 
64
 
65
  submit_btn.click(
66
  main_func,
67
+ [Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment],
68
  [label,local_plot], api_name="Graduation_Predictor"
69
  )
70
 
71
  gr.Markdown("### Click on any of the examples below to see how it works:")
72
+ gr.Examples([['Graduate',119.6,13.000000,122.0,9773,5,18], [Target, Admission_Grade, 2nd_Sem_Grades, Previous_Qualification_Grade, 1st_Sem_Grades, Course, 2nd_Sem_Units_Approved, Age_at_Enrollment]
73
+ , [label,local_plot], main_func, cache_examples=True)
74
 
75
  demo.launch()