Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,11 @@ loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb'))
|
|
13 |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
14 |
|
15 |
# Create the main function for server
|
16 |
-
def main_func(Target,
|
17 |
-
new_row = pd.DataFrame.from_dict({'Target':Target,
|
18 |
-
'
|
19 |
-
'Age at enrollment':
|
|
|
20 |
|
21 |
prob = loaded_model.predict_proba(new_row)
|
22 |
|
@@ -29,11 +30,11 @@ def main_func(Target, Admission_grade, Curricular_units_2nd_sem_grade, Previous_
|
|
29 |
local_plot = plt.gcf()
|
30 |
plt.close()
|
31 |
|
32 |
-
return {"
|
33 |
|
34 |
# Create the UI
|
35 |
-
title = "**
|
36 |
-
description1 = """This app takes info from subjects and predicts their
|
37 |
|
38 |
description2 = """
|
39 |
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€
|
@@ -45,28 +46,28 @@ with gr.Blocks(title=title) as demo:
|
|
45 |
gr.Markdown("""---""")
|
46 |
gr.Markdown(description2)
|
47 |
gr.Markdown("""---""")
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
submit_btn.click(
|
64 |
main_func,
|
65 |
-
[
|
66 |
-
[label,local_plot], api_name="
|
67 |
)
|
68 |
|
69 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
70 |
-
gr.Examples([[
|
71 |
|
72 |
demo.launch()
|
|
|
13 |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
14 |
|
15 |
# Create the main function for server
|
16 |
+
def main_func(Target, Admission grade, Curricular units 2nd sem (grade), Previous qualification (grade), Curricular units 1st sem (grade), Course, Curricular units 2nd sem (approved), Age at enrollment):
|
17 |
+
new_row = pd.DataFrame.from_dict({'Target':Target,'Admission grade':AdmissionGrade,
|
18 |
+
'Curricular units 2nd sem (grade)':CurricularUnits2ndSemGrade,'Previous qualification (grade)':PreviousQualificationGrade,'Curricular units 1st sem (grade)':CurricularUnits1stSemGrade,
|
19 |
+
'Course':Course,'Curricular units 2nd sem (approved)':CurricularUnits2ndSemApproved,'Age at enrollment':AgeAtEnrollment,
|
20 |
+
orient = 'index').transpose()
|
21 |
|
22 |
prob = loaded_model.predict_proba(new_row)
|
23 |
|
|
|
30 |
local_plot = plt.gcf()
|
31 |
plt.close()
|
32 |
|
33 |
+
return {"Dropout": float(prob[0][0]), "Graduate": 1-float(prob[0][0])}, local_plot
|
34 |
|
35 |
# Create the UI
|
36 |
+
title = "**Student Graduation Predictor & Interpreter** πͺ"
|
37 |
+
description1 = """This app takes info from subjects and predicts their graduation likelihood."""
|
38 |
|
39 |
description2 = """
|
40 |
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€
|
|
|
46 |
gr.Markdown("""---""")
|
47 |
gr.Markdown(description2)
|
48 |
gr.Markdown("""---""")
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
Target = gr.Number(label="Target Score", value=40)
|
52 |
+
AdmissionGrade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1)
|
53 |
+
PreviousQualificationGrade = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1)
|
54 |
+
CurricularUnits1stSemGrade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1)
|
55 |
+
Course = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1)
|
56 |
+
CurricularUnits2ndSemApproved = gr.Slider(label="CurricularUnits2ndSemApproved Score", minimum=1, maximum=5, value=4, step=1)
|
57 |
+
AgeAtEnrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1)
|
58 |
+
submit_btn = gr.Button("Analyze")
|
59 |
|
60 |
+
with gr.Column(visible=True) as output_col:
|
61 |
+
label = gr.Label(label = "Predicted Label")
|
62 |
+
local_plot = gr.Plot(label = 'Shap:')
|
63 |
|
64 |
submit_btn.click(
|
65 |
main_func,
|
66 |
+
[Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment],
|
67 |
+
[label,local_plot], api_name="Graduation_Predictor"
|
68 |
)
|
69 |
|
70 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
71 |
+
gr.Examples([['Graduate',],119.6,13.000000,122.0,9773,5,18], [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment], [label,local_plot], main_func, cache_examples=True)
|
72 |
|
73 |
demo.launch()
|