import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(Target, Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment): new_row = pd.DataFrame.from_dict({'Target':Target, 'Admission grade':Admission_grade,'Curricular units 2nd sem (grade)':Curricular_units_2nd_sem_grade, 'Previous qualifications':Previous_qualifications,'Curricular units 1st sem (grade)':Curricular_units_1st_sem_grade, 'Course':Course,'Curricular units 2nd sem (approved)':Curricular_units_2nd_sem_approved, 'Age at enrollment':Age_at_enrollment}).transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Heart Attack Predictor & Interpreter** 🪐" description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" description2 = """ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞 """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") Curricular_units_2nd_sem_grade = gr.Number(label="Curricular units 2nd sem (grade)", value=40) Admission_grade = gr.Slider(label="Admission grade", minimum=0, maximum=1, value=1, step=1) Previous_qualifications = gr.Slider(label="Previous qualifications", minimum=1, maximum=5, value=4, step=1) Curricular_units_1st_sem_grade = gr.Slider(label="Curricular units 1st sem (grade)", minimum=1, maximum=5, value=4, step=1) Course = gr.Slider(label="Course", minimum=1, maximum=5, value=4, step=1) Curricular_units_2nd_sem_approved = gr.Slider(label="Curricular units 2nd sem (approved)", minimum=1, maximum=5, value=4, step=1) Age_at_enrollment = gr.Slider(label="Age_at_enrollment", minimum=1, maximum=5, value=4, step=1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment], [label,local_plot], api_name="Dropout_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[24,0,4,4,5,5,4,4,5,5,1,2,3], [24,0,4,4,5,3,3,2,1,1,1,2,3]], [Admission_grade, Curricular_units_2nd_sem_grade, Previous_qualifications, Curricular_units_1st_sem_grade, Course, Curricular_units_2nd_sem_approved, Age_at_enrollment], [label,local_plot], main_func, cache_examples=True) demo.launch()