import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(Target, Admission grade, Curricular units 2nd sem (grade), Previous qualification (grade), Curricular units 1st sem (grade), Course, Curricular units 2nd sem (approved), Age at enrollment): new_row = pd.DataFrame.from_dict({'Target':Target,'Admission grade':AdmissionGrade, 'Curricular units 2nd sem (grade)':CurricularUnits2ndSemGrade,'Previous qualification (grade)':PreviousQualificationGrade,'Curricular units 1st sem (grade)':CurricularUnits1stSemGrade, 'Course':Course,'Curricular units 2nd sem (approved)':CurricularUnits2ndSemApproved,'Age at enrollment':AgeAtEnrollment, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Dropout": float(prob[0][0]), "Graduate": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Student Graduation Predictor & Interpreter** 🪐" description1 = """This app takes info from subjects and predicts their graduation likelihood.""" description2 = """ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞 """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): Target = gr.Number(label="Target Score", value=40) AdmissionGrade = gr.Slider(label="AdmissionGrade Score", minimum=0, maximum=1, value=1, step=1) PreviousQualificationGrade = gr.Slider(label="PreviousQualificationGrade Score", minimum=1, maximum=5, value=4, step=1) CurricularUnits1stSemGrade = gr.Slider(label="CurricularUnits1stSemGrade Score", minimum=1, maximum=5, value=4, step=1) Course = gr.Slider(label="Course Score", minimum=1, maximum=5, value=4, step=1) CurricularUnits2ndSemApproved = gr.Slider(label="CurricularUnits2ndSemApproved Score", minimum=1, maximum=5, value=4, step=1) AgeAtEnrollment = gr.Slider(label="AgeAtEnrollment Score", minimum=1, maximum=5, value=4, step=1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment], [label,local_plot], api_name="Graduation_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([['Graduate',119.6,13.000000,122.0,9773,5,18], [Target, AdmissionGrade, CurricularUnits2ndSemGrade, PreviousQualificationGrade, CurricularUnits1stSemGrade, Course, CurricularUnits2ndSemApproved, AgeAtEnrollment], [label,local_plot], main_func, cache_examples=True) demo.launch()