Spaces:
Sleeping
Sleeping
Commit
·
07e1c25
1
Parent(s):
01bf5dd
Upload 3 files
Browse files- app.py +103 -0
- heart_xgb.pkl +3 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import pandas as pd
|
3 |
+
import shap
|
4 |
+
from shap.plots._force_matplotlib import draw_additive_plot
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# load the model from disk
|
10 |
+
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb'))
|
11 |
+
|
12 |
+
# Setup SHAP
|
13 |
+
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
|
14 |
+
|
15 |
+
# Create the main function for server
|
16 |
+
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall):
|
17 |
+
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex,
|
18 |
+
'cp':cp,'trtbps':trtbps,'chol':chol,
|
19 |
+
'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng,
|
20 |
+
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall},
|
21 |
+
orient = 'index').transpose()
|
22 |
+
|
23 |
+
prob = loaded_model.predict_proba(new_row)
|
24 |
+
|
25 |
+
shap_values = explainer(new_row)
|
26 |
+
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
|
27 |
+
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
|
28 |
+
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
|
29 |
+
|
30 |
+
plt.tight_layout()
|
31 |
+
local_plot = plt.gcf()
|
32 |
+
plt.close()
|
33 |
+
|
34 |
+
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot\
|
35 |
+
|
36 |
+
# Create the UI
|
37 |
+
title = "**Heart Attack Predictor & Interpreter** 🪐"
|
38 |
+
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""
|
39 |
+
|
40 |
+
description2 = """
|
41 |
+
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞
|
42 |
+
"""
|
43 |
+
|
44 |
+
with gr.Blocks(title=title) as demo:
|
45 |
+
gr.Markdown(f"## {title}")
|
46 |
+
gr.Markdown(description2)
|
47 |
+
gr.Markdown("""---""")
|
48 |
+
gr.Markdown(description2)
|
49 |
+
gr.Markdown("""---""")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
age = gr.Number(label="age Score", value=40)
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
with gr.Column():
|
56 |
+
sex = gr.Dropdown(label = "Sex", choices = ["Female", "Male"], type = "index" )
|
57 |
+
cp = gr.Dropdown(label="CP (Chest Pain) Score", choices = ["Typical Angina", "Atypical Angina", "Non-Anginal", "Asymptomatic"], type = "index", )
|
58 |
+
|
59 |
+
with gr.Column():
|
60 |
+
cp = gr.Dropdown(label="cp Score", choices = ["Typical", "Atypical", "Non-Anginal", "Asymptomatic"], type = "index",
|
61 |
+
)
|
62 |
+
trtbps = gr.Number(label="trtbps Score", info = "resting blood pressure (in mm Hg)")
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column():
|
66 |
+
fbs = gr.Slider(label="fbs Score", minimum=0, maximum=1, value=1, step=1)
|
67 |
+
with gr.Column():
|
68 |
+
restecg = gr.Slider(label="restecg Score", minimum=0, maximum=1, value=1, step=1)
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
thalachh = gr.Number(label="thalachh Score", info = "Maximum heart rate")
|
73 |
+
with gr.Column():
|
74 |
+
chol = gr.Number(label="chol Score", info = " cholestoral in mg/dl fetched via BMI sensor" )
|
75 |
+
exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1)
|
76 |
+
|
77 |
+
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column():
|
80 |
+
oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1)
|
81 |
+
with gr.Column():
|
82 |
+
slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1)
|
83 |
+
with gr.Column():
|
84 |
+
caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1)
|
85 |
+
with gr.Column():
|
86 |
+
thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1)
|
87 |
+
|
88 |
+
submit_btn = gr.Button("Analyze")
|
89 |
+
|
90 |
+
with gr.Column(visible=True) as output_col:
|
91 |
+
label = gr.Label(label = "Predicted Label")
|
92 |
+
local_plot = gr.Plot(label = 'Shap:')
|
93 |
+
|
94 |
+
submit_btn.click(
|
95 |
+
main_func,
|
96 |
+
[age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
|
97 |
+
[label,local_plot], api_name="Heart_Predictor"
|
98 |
+
)
|
99 |
+
|
100 |
+
gr.Markdown("### Click on any of the examples below to see how it works:")
|
101 |
+
|
102 |
+
|
103 |
+
demo.launch()
|
heart_xgb.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3d7f96dab791241a7536e789aadc37358ad1ccf276dccd89885ca8c2fdbdd4f
|
3 |
+
size 132944
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.1.3
|
2 |
+
Pillow
|
3 |
+
yake
|
4 |
+
pandas
|
5 |
+
sklearn
|
6 |
+
shap
|
7 |
+
xgboost
|
8 |
+
matplotlib
|
9 |
+
numpy
|
10 |
+
streamlit
|