Project_Team_1 / app.py
cbuehler's picture
Update app.py
37f7c13 verified
raw
history blame
3.37 kB
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("age_xgb.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(SEQN, RIDAGEYR, RIAGENDR, PAQ605, BMXBMI, LBXGLU, DIQ010, LBXGLT,LBXIN,oldpeak,slp,caa,thall):
new_row = pd.DataFrame.from_dict({'SEQN':SEQN,'RIDAGEYR':RIDAGEYR,
'RIAGENDR':RIAGENDR,'PAQ605':PAQ605,'BMXBMI':BMXBMI,
'LBXGLU':LBXGLU, 'DIQ010':DIQ010,'LBXGLT':LBXGLT,'LBXIN':LBXIN,
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall},
orient = 'index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Heart Attack Predictor & Interpreter** πŸͺ"
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""
description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🀞
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
SEQN = gr.Number(label="SEQN Score", value=40)
RIDAGEYR = gr.Slider(label="RIDAGEYR Score", minimum=0, maximum=1, value=1, step=1)
RIAGENDR = gr.Slider(label="RIAGENDR Score", minimum=1, maximum=5, value=4, step=1)
PAQ605 = gr.Slider(label="PAQ605 Score", minimum=1, maximum=5, value=4, step=1)
BMXBMI = gr.Slider(label="BMXBMI Score", minimum=1, maximum=5, value=4, step=1)
LBXGLU = gr.Slider(label="LBXGLU Score", minimum=1, maximum=5, value=4, step=1)
DIQ010 = gr.Slider(label="DIQ010 Score", minimum=1, maximum=5, value=4, step=1)
LBXGLT = gr.Slider(label="LBXGLT Score", minimum=1, maximum=5, value=4, step=1)
LBXIN = gr.Slider(label="LBXIN Score", minimum=1, maximum=5, value=4, step=1)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.Plot(label = 'Shap:')
submit_btn.click(
main_func,
[SEQN, RIDAGEYR, RIAGENDR, PAQ605, BMXBMI, LBXGLU, DIQ010, LBXGLT,LBXIN],
[label,local_plot], api_name="Heart_Predictor"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[24,0,4,4,5,5,4,4,5,5,1,2,3], [24,0,4,4,5,3,3,2,1,1,1,2,3]], [SEQN, RIDAGEYR, RIAGENDR, PAQ605, BMXBMI, LBXGLU, DIQ010, LBXGLT,LBXIN,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True)
demo.launch()