File size: 3,614 Bytes
894c934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall):
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex,
'cp':cp,'trtbps':trtbps,'chol':chol,
'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng,
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall},
orient = 'index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Heart Attack Predictor & Interpreter** 🪐"
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""
description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
age = gr.Number(label="age Score", value=40)
sex = gr.Slider(label="sex Score", minimum=0, maximum=1, value=1, step=1)
cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1)
trtbps = gr.Slider(label="trtbps Score", minimum=1, maximum=5, value=4, step=1)
chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1)
fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1)
restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1)
thalachh = gr.Slider(label="thalachh Score", minimum=1, maximum=5, value=4, step=1)
exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1)
oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1)
slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1)
caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1)
thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.Plot(label = 'Shap:')
submit_btn.click(
main_func,
[age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
[label,local_plot], api_name="Heart_Predictor"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[24,0,4,4,5,5,4,4,5,5,1,2,3], [24,0,4,4,5,3,3,2,1,1,1,2,3]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True)
demo.launch() |