|
import pickle |
|
import pandas as pd |
|
import shap |
|
from shap.plots._force_matplotlib import draw_additive_plot |
|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) |
|
|
|
|
|
explainer = shap.Explainer(loaded_model) |
|
|
|
|
|
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall): |
|
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, |
|
'cp':cp,'trtbps':trtbps,'chol':chol, |
|
'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng, |
|
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall}, |
|
orient = 'index').transpose() |
|
|
|
prob = loaded_model.predict_proba(new_row) |
|
|
|
shap_values = explainer(new_row) |
|
|
|
|
|
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) |
|
|
|
plt.tight_layout() |
|
local_plot = plt.gcf() |
|
plt.close() |
|
|
|
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot |
|
|
|
|
|
title = "**Heart Attack Predictor & Interpreter** π«" |
|
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" |
|
|
|
description2 = """ |
|
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€ |
|
""" |
|
|
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(description1) |
|
gr.Markdown("""---""") |
|
gr.Markdown(description2) |
|
gr.Markdown("""---""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
age = gr.Number(label="What's your age?") |
|
sex = gr.Dropdown(label="What's your sex?", choices = ["Female", "Male"],type="index") |
|
cp = gr.inputs.Dropdown(["typical", "atypical", "other", "asymptomatic"], label="Chest pain type") |
|
|
|
with gr.Column(): |
|
gr.Markdown("""""") |
|
|
|
with gr.Column(): |
|
trtbps = gr.inputs.Slider(50, 180, default=80, label="Resting blood pressure") |
|
chol = gr.Number(label="What is your cholesterol in (mg/dl)?", value=100, info = "cholestoral in mg/dl" ) |
|
fbs = gr.Dropdown(label="Is your fasting blood sugar > 120 mg/dl?", choices = ["yes","no"], type = "index") |
|
restecg = gr.Dropdown(label="What is your resting ECG result?", choices = ["normal","ST-T wave abnormality"], type = "index", value = "normal", info = "resting ESG result") |
|
thall = gr.Dropdown(label="What is your Thalassemia condition?", choices = ["NULL","Fixed Defect", "Normal Blood Flow", "Reversible Defect"], type = "index", value = "NULL") |
|
|
|
|
|
with gr.Column(): |
|
thalachh = gr.Number(label="What is your maximum heart rate?", value=100) |
|
exng = gr.Dropdown(label="exercise-induced angina", choices = ["yes","no"], type = "index", value = "1") |
|
oldpeak = gr.Slider(label="ST depression induced by exercise relative to rest", minimum=0, maximum=10, value=4, step=.1) |
|
slp = gr.Dropdown(label="Slope of the peak exercise ST segment", choices = ["upsloping","flat","downsloping"], type = "index", value = "1") |
|
caa = gr.Dropdown(label="Degree of coronary artery anomaly", choices = ["0","1","2","3","4"], type = "index", value = "1") |
|
|
|
|
|
submit_btn = gr.Button("Process") |
|
|
|
with gr.Column(visible=True) as output_col: |
|
label = gr.Label(label = "Predicted Label") |
|
local_plot = gr.Plot(label = 'Shap:') |
|
|
|
submit_btn.click( |
|
main_func, |
|
[age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], |
|
[label,local_plot], api_name="Heart_Predictor" |
|
) |
|
|
|
gr.Markdown("### Click on any of the examples below to see how it works:") |
|
gr.Examples([[24,"male",4,70,200,"yes","normal",80,"yes",5,1,2,"Fixed Defect"], [24,"female",3,80,180,"no","normal",90,"no",1,1,2,"Reversible Defect"]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True) |
|
|
|
demo.launch() |
|
|
|
|
|
|
|
|
|
|
|
|