group3 / app.py
adeledududu's picture
Update app.py
437e8c7
raw
history blame
4.51 kB
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall):
new_row = pd.DataFrame.from_dict({'age':age,'sex':sex,
'cp':cp,'trtbps':trtbps,'chol':chol,
'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng,
'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall},
orient = 'index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Heart Attack Predictor & Interpreter** πŸ«€"
description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""
description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🀞
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
with gr.Row():
with gr.Column():
age = gr.Number(label="What's your age?")
sex = gr.Dropdown(label="What's your sex?", choices = ["Female", "Male"],type="index")
cp = gr.inputs.Dropdown(["typical", "atypical", "other", "asymptomatic"], label="Chest pain type")
with gr.Column():
gr.Markdown("""![Heart Attack!](file/heartattack.jpeg)""")
with gr.Column():
trtbps = gr.inputs.Slider(50, 180, default=80, label="Resting blood pressure")
chol = gr.Number(label="What is your cholesterol in (mg/dl)?", value=100, info = "cholestoral in mg/dl" )
fbs = gr.Dropdown(label="Is your fasting blood sugar > 120 mg/dl?", choices = ["yes","no"], type = "index")
restecg = gr.Dropdown(label="What is your resting ECG result?", choices = ["normal","ST-T wave abnormality"], type = "index", value = "normal", info = "resting ESG result")
thall = gr.Dropdown(label="What is your Thalassemia condition?", choices = ["NULL","Fixed Defect", "Normal Blood Flow", "Reversible Defect"], type = "index", value = "NULL")
with gr.Column():
thalachh = gr.Number(label="What is your maximum heart rate?", value=100)
exng = gr.Dropdown(label="exercise-induced angina", choices = ["yes","no"], type = "index", value = "1")
oldpeak = gr.Slider(label="ST depression induced by exercise relative to rest", minimum=0, maximum=10, value=4, step=.1)
slp = gr.Dropdown(label="Slope of the peak exercise ST segment", choices = ["upsloping","flat","downsloping"], type = "index", value = "1")
caa = gr.Dropdown(label="Degree of coronary artery anomaly", choices = ["0","1","2","3","4"], type = "index", value = "1")
submit_btn = gr.Button("Process")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.Plot(label = 'Shap:')
submit_btn.click(
main_func,
[age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall],
[label,local_plot], api_name="Heart_Predictor"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[24,"male",4,70,200,"yes","normal",80,"yes",5,1,2,"Fixed Defect"], [24,"female",3,80,180,"no","normal",90,"no",1,1,2,"Reversible Defect"]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True)
demo.launch()