import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall): new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, 'cp':cp,'trtbps':trtbps,'chol':chol, 'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng, 'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall}, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Heart Attack Predictor & Interpreter** 🫀" description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" description2 = """ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞 """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): age = gr.Number(label="What's your age?") sex = gr.Dropdown(label="What's your sex?", choices = ["Female", "Male"],type="index") cp = gr.inputs.Dropdown(["typical", "atypical", "other", "asymptomatic"], label="Chest pain type") with gr.Column(): trtbps = gr.inputs.Slider(50, 180, default=80, label="Resting blood pressure") chol = gr.Number(label="What is your cholesterol in (mg/dl)?", value=100, info = "cholestoral in mg/dl" ) fbs = gr.Dropdown(label="Is your fasting blood sugar > 120 mg/dl?", choices = ["yes","no"], type = "index") restecg = gr.Dropdown(label="What is your resting ECG result?", choices = ["normal","ST-T wave abnormality"], type = "index", value = "normal", info = "resting ESG result") thall = gr.Dropdown(label="What is your Thalassemia condition?", choices = ["NULL","Fixed Defect", "Normal Blood Flow", "Reversible Defect"], type = "index", value = "NULL") with gr.Column(): thalachh = gr.Number(label="What is your maximum heart rate?", value=100) exng = gr.Dropdown(label="exercise-induced angina", choices = ["yes","no"], type = "index", value = "1") oldpeak = gr.Slider(label="ST depression induced by exercise relative to rest", minimum=0, maximum=10, value=4, step=.1) slp = gr.Dropdown(label="Slope of the peak exercise ST segment", choices = ["upsloping","flat","downsloping"], type = "index", value = "1") caa = gr.Dropdown(label="Degree of coronary artery anomaly", choices = ["0","1","2","3","4"], type = "index", value = "1") submit_btn = gr.Button("Process") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], api_name="Heart_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[24,"male",4,70,200,"yes","normal",80,"yes",5,1,2,"Fixed Defect"], [24,"female",3,80,180,"no","normal",90,"no",1,1,2,"Reversible Defect"]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True) demo.launch()