Spaces:
Runtime error
Runtime error
File size: 4,915 Bytes
e669abf f387393 261ea5b e669abf 0e20e10 1b8c45e e669abf dc8ab1d f057421 998e5ed e669abf 9cc7c4e e669abf 9cc7c4e 2888c51 9cc7c4e 7f48a24 5809f13 68fbe9e 5809f13 68fbe9e 5809f13 55ecc4c 8a754d8 7c8cdc0 8a754d8 cbc546e 7f48a24 e669abf 579be1d e669abf 518ac36 4a73816 8742c0b 0e91bfe 7f48a24 5809f13 7c8cdc0 8a754d8 cbc546e 8a754d8 287e288 8a754d8 cbc546e 8a754d8 cbc546e 8a754d8 518ac36 8a754d8 5809f13 518ac36 e669abf 42c5082 e669abf 8a754d8 e669abf cde5ee9 e669abf 42c5082 e669abf cde5ee9 c78f4ac 5809f13 e669abf cde5ee9 5809f13 a82cc2b 5809f13 55ecc4c e669abf 42c5082 9cc7c4e 8a754d8 5809f13 f1c8fb6 e669abf 3553235 aa5b3ba cbc546e 8a754d8 5809f13 e669abf cbc546e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
import matplotlib.pyplot as plt
import sys
import csv
csv.field_size_limit(sys.maxsize)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)
# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model,
tokenizer=tokenizer, return_all_scores=True)
explainer = shap.Explainer(pred)
##
# classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
# def med_score(x):
# label = x['label']
# score_1 = x['score']
# return round(score_1,3)
# def sym_score(x):
# label2sym= x['label']
# score_1sym = x['score']
# return round(score_1sym,3)
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
#
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
shap_values = explainer([str(x).lower()])
# # Find the index of the class you want as the default reference (e.g., 'label_1')
# label_1_index = np.where(np.array(explainer.output_names) == 'label_1')[0][0]
# # Plot the SHAP values for a specific instance in your dataset (e.g., instance 0)
# shap.plots.text(shap_values[label_1_index][0])
local_plot = shap.plots.text(shap_values[0], display=False)
# med = med_score(classifier(x+str(", There is a medication."))[0])
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
res = ner_pipe(x)
entity_colors = {
'Severity': 'red',
'Sign_symptom': 'green',
'Medication': 'lightblue',
'Age': 'yellow',
'Sex':'yellow',
'Diagnostic_procedure':'gray',
'Biological_structure':'silver'}
htext = ""
prev_end = 0
for entity in res:
start = entity['start']
end = entity['end']
word = entity['word'].replace("##", "")
color = entity_colors[entity['entity_group']]
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
prev_end = end
htext += x[prev_end:]
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
def main(prob1):
text = str(prob1).lower()
obj = adr_predict(text)
return obj[0],obj[1],obj[2]
title = "Welcome to **ADR Detector** πͺ"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Row():
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
with gr.Column(visible=True) as output_col:
local_plot = gr.HTML(label = 'Shap:')
htext = gr.HTML(label="NER")
# med = gr.Label(label = "Contains Medication")
# sym = gr.Label(label = "Contains Symptoms")
submit_btn.click(
main,
[prob1],
[label
,local_plot, htext
# , med, sym
], api_name="adr"
)
with gr.Row():
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
[prob1], [label,local_plot, htext
# , med, sym
], main, cache_examples=True)
demo.launch() |