Spaces:
Sleeping
Sleeping
File size: 5,333 Bytes
e669abf f387393 1abbe27 e669abf 0e20e10 1b8c45e e669abf 01df1cf e669abf 9cc7c4e e669abf 9cc7c4e 2888c51 9cc7c4e f1c8fb6 1abbe27 e669abf 9cc7c4e 0a1e37c f1c8fb6 1abbe27 e669abf 2888c51 e669abf f387393 0a1e37c 9cc7c4e 0a1e37c 9cc7c4e 0a1e37c 9cc7c4e 0a1e37c f1c8fb6 9cc7c4e 0a1e37c 1abbe27 9cc7c4e e669abf 42c5082 e669abf f1c8fb6 e669abf 42c5082 e669abf 9cc7c4e 0a1e37c 9cc7c4e 1abbe27 e669abf 42c5082 9cc7c4e f1c8fb6 e669abf 42c5082 9cc7c4e f1c8fb6 e669abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import tensorflow as tf
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
# from transformers_interpret import SequenceClassificationExplainer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device)
# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model,
tokenizer=tokenizer, return_all_scores=True)
explainer = shap.Explainer(pred)
def interpretation_function(text):
shap_values = explainer([text])
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
return scores
# model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1")
# modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda
# cls_explainer = SequenceClassificationExplainer(
# model,
# tokenizer)
# # define a prediction function
# def f(x):
# tv = torch.tensor([tokenizer.encode(v, padding='max_length', max_length=500, truncation=True) for v in x]).cuda()
# outputs = modelc(tv)[0].detach().cpu().numpy()
# scores = (np.exp(outputs).T / np.exp(outputs).sum(-1)).T
# val = sp.special.logit(scores[:,1]) # use one vs rest logit units
# return val
def adr_predict(x):
encoded_input = tokenizer(str(x), return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = tf.nn.softmax(scores)
# # build a pipeline object to do predictions
# pred = transformers.pipeline("text-classification", model=model,
# tokenizer=tokenizer, device=0, return_all_scores=True)
# explainer = shap.Explainer(pred)
# shap_values = explainer([x])
# shap_plot = shap.plots.text(shap_values)
# word_attributions = cls_explainer(str(x))
# # scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
# letter = []
# score = []
# for i in word_attributions:
# if i[1]>0.5:
# a = "++"
# elif (i[1]<=0.5) and (i[1]>0.1):
# a = "+"
# elif (i[1]>=-0.5) and (i[1]<-0.1):
# a = "-"
# elif i[1]<-0.5:
# a = "--"
# else:
# a = "NA"
# letter.append(i[0])
# score.append(a)
# word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))]
# # SHAP:
# # build an explainer using a token masker
# explainer = shap.Explainer(f, tokenizer)
# shap_values = explainer(str(x), fixed_context=1)
# scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
# # plot the first sentence's explanation
# # plt = shap.plots.text(shap_values[0],display=False)
shap_scores = interpretation_function(str(x).lower())
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, shap_scores
# , word_attributions ,scores
def main(prob1):
text = str(prob1).lower()
obj = adr_predict(text)
return obj[0],obj[1]
# ,obj[2]
title = "Welcome to **ADR Detector** 🪐"
description1 = """
This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons.
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
# impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
# color_map={"+++": "royalblue","++": "cornflowerblue",
# "+": "lightsteelblue", "NA":"white"})
# NER = gr.HTML(label = 'NER:')
# intp = gr.HighlightedText(label="Word Scores",
# combine_adjacent=False).style(color_map={"++": "darkred","+": "red",
# "--": "darkblue",
# "-": "blue", "NA":"white"})
interpretation = gr.components.Interpretation(text)
submit_btn.click(
main,
[prob1],
[label
# ,intp
,interpretation
], api_name="adr"
)
gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
gr.Examples([["I have minor pain."],["I have severe pain."]], [prob1], [label
# ,intp
,interpretation
], main, cache_examples=True)
demo.launch()
|