paragon-analytics commited on
Commit
579be1d
·
1 Parent(s): cba913c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -46,7 +46,7 @@ def interpretation_function(text):
46
  # return val
47
 
48
  def adr_predict(x):
49
- encoded_input = tokenizer(str(x), return_tensors='pt')
50
  output = model(**encoded_input)
51
  scores = output[0][0].detach().numpy()
52
  scores = tf.nn.softmax(scores)
@@ -96,12 +96,9 @@ def main(prob1):
96
  text = str(prob1).lower()
97
  obj = adr_predict(text)
98
  return obj[0],obj[1]
99
- # ,obj[2]
100
 
101
  title = "Welcome to **ADR Detector** 🪐"
102
- description1 = """
103
- This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons.
104
- """
105
 
106
  with gr.Blocks(title=title) as demo:
107
  gr.Markdown(f"## {title}")
@@ -135,9 +132,7 @@ with gr.Blocks(title=title) as demo:
135
  )
136
 
137
  gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
138
- gr.Examples([["I have minor pain."],["I have severe pain."]], [prob1], [label
139
- # ,intp
140
- ,interpretation
141
  ], main, cache_examples=True)
142
 
143
  demo.launch()
 
46
  # return val
47
 
48
  def adr_predict(x):
49
+ encoded_input = tokenizer(x, return_tensors='pt')
50
  output = model(**encoded_input)
51
  scores = output[0][0].detach().numpy()
52
  scores = tf.nn.softmax(scores)
 
96
  text = str(prob1).lower()
97
  obj = adr_predict(text)
98
  return obj[0],obj[1]
 
99
 
100
  title = "Welcome to **ADR Detector** 🪐"
101
+ description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons."""
 
 
102
 
103
  with gr.Blocks(title=title) as demo:
104
  gr.Markdown(f"## {title}")
 
132
  )
133
 
134
  gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:")
135
+ gr.Examples([["I have minor pain."],["I have severe pain."]], [prob1], [label,interpretation
 
 
136
  ], main, cache_examples=True)
137
 
138
  demo.launch()