Spaces:
Sleeping
Sleeping
paragon-analytics
commited on
Commit
·
5809f13
1
Parent(s):
6f88e98
Update app.py
Browse files
app.py
CHANGED
@@ -30,17 +30,17 @@ pred = transformers.pipeline("text-classification", model=model,
|
|
30 |
explainer = shap.Explainer(pred)
|
31 |
|
32 |
##
|
33 |
-
classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
|
34 |
|
35 |
-
def med_score(x):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
def sym_score(x):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
@@ -57,8 +57,8 @@ def adr_predict(x):
|
|
57 |
shap_values = explainer([str(x).lower()])
|
58 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
59 |
|
60 |
-
med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
-
sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
res = ner_pipe(x)
|
64 |
|
@@ -69,7 +69,7 @@ def adr_predict(x):
|
|
69 |
'Age': 'yellow',
|
70 |
'Sex':'yellow',
|
71 |
'Diagnostic_procedure':'gray',
|
72 |
-
'Biological_structure':'
|
73 |
|
74 |
htext = ""
|
75 |
prev_end = 0
|
@@ -85,13 +85,14 @@ def adr_predict(x):
|
|
85 |
|
86 |
htext += x[prev_end:]
|
87 |
|
88 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,
|
|
|
89 |
|
90 |
|
91 |
def main(prob1):
|
92 |
text = str(prob1).lower()
|
93 |
obj = adr_predict(text)
|
94 |
-
return obj[0],obj[1],obj[2]
|
95 |
|
96 |
title = "Welcome to **ADR Detector** 🪐"
|
97 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
@@ -107,18 +108,20 @@ with gr.Blocks(title=title) as demo:
|
|
107 |
|
108 |
with gr.Column(visible=True) as output_col:
|
109 |
label = gr.Label(label = "Predicted Label")
|
110 |
-
|
111 |
-
htext = gr.HTML(label="NER")
|
112 |
|
113 |
with gr.Column(visible=True) as output_col:
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
|
117 |
submit_btn.click(
|
118 |
main,
|
119 |
[prob1],
|
120 |
[label
|
121 |
-
,local_plot,
|
|
|
122 |
], api_name="adr"
|
123 |
)
|
124 |
|
@@ -126,6 +129,8 @@ with gr.Blocks(title=title) as demo:
|
|
126 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
127 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
128 |
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
129 |
-
[prob1], [label,local_plot,
|
|
|
|
|
130 |
|
131 |
demo.launch()
|
|
|
30 |
explainer = shap.Explainer(pred)
|
31 |
|
32 |
##
|
33 |
+
# classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
|
34 |
|
35 |
+
# def med_score(x):
|
36 |
+
# label = x['label']
|
37 |
+
# score_1 = x['score']
|
38 |
+
# return round(score_1,3)
|
39 |
|
40 |
+
# def sym_score(x):
|
41 |
+
# label2sym= x['label']
|
42 |
+
# score_1sym = x['score']
|
43 |
+
# return round(score_1sym,3)
|
44 |
|
45 |
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
|
|
57 |
shap_values = explainer([str(x).lower()])
|
58 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
59 |
|
60 |
+
# med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
+
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
res = ner_pipe(x)
|
64 |
|
|
|
69 |
'Age': 'yellow',
|
70 |
'Sex':'yellow',
|
71 |
'Diagnostic_procedure':'gray',
|
72 |
+
'Biological_structure':'silver'}
|
73 |
|
74 |
htext = ""
|
75 |
prev_end = 0
|
|
|
85 |
|
86 |
htext += x[prev_end:]
|
87 |
|
88 |
+
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
|
89 |
+
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
|
90 |
|
91 |
|
92 |
def main(prob1):
|
93 |
text = str(prob1).lower()
|
94 |
obj = adr_predict(text)
|
95 |
+
return obj[0],obj[1],obj[2]
|
96 |
|
97 |
title = "Welcome to **ADR Detector** 🪐"
|
98 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
|
|
108 |
|
109 |
with gr.Column(visible=True) as output_col:
|
110 |
label = gr.Label(label = "Predicted Label")
|
111 |
+
|
|
|
112 |
|
113 |
with gr.Column(visible=True) as output_col:
|
114 |
+
local_plot = gr.HTML(label = 'Shap:')
|
115 |
+
htext = gr.HighlightedText(label="NER")
|
116 |
+
# med = gr.Label(label = "Contains Medication")
|
117 |
+
# sym = gr.Label(label = "Contains Symptoms")
|
118 |
|
119 |
submit_btn.click(
|
120 |
main,
|
121 |
[prob1],
|
122 |
[label
|
123 |
+
,local_plot, htext
|
124 |
+
# , med, sym
|
125 |
], api_name="adr"
|
126 |
)
|
127 |
|
|
|
129 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
130 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
131 |
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
132 |
+
[prob1], [label,local_plot, htext
|
133 |
+
# , med, sym
|
134 |
+
], main, cache_examples=True)
|
135 |
|
136 |
demo.launch()
|