Spaces:
Sleeping
Sleeping
paragon-analytics
commited on
Commit
·
8a754d8
1
Parent(s):
2695c04
Update app.py
Browse files
app.py
CHANGED
@@ -42,10 +42,10 @@ explainer = shap.Explainer(pred)
|
|
42 |
# score_1sym = x['score']
|
43 |
# return round(score_1sym,3)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
#
|
50 |
|
51 |
def adr_predict(x):
|
@@ -60,41 +60,39 @@ def adr_predict(x):
|
|
60 |
# med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot
|
89 |
-
# ,htext
|
90 |
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
|
91 |
|
92 |
|
93 |
def main(prob1):
|
94 |
text = str(prob1).lower()
|
95 |
obj = adr_predict(text)
|
96 |
-
return obj[0],obj[1]
|
97 |
-
# ,obj[2]
|
98 |
|
99 |
title = "Welcome to **ADR Detector** 🪐"
|
100 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
@@ -114,7 +112,7 @@ with gr.Blocks(title=title) as demo:
|
|
114 |
|
115 |
with gr.Column(visible=True) as output_col:
|
116 |
local_plot = gr.HTML(label = 'Shap:')
|
117 |
-
|
118 |
# med = gr.Label(label = "Contains Medication")
|
119 |
# sym = gr.Label(label = "Contains Symptoms")
|
120 |
|
@@ -122,8 +120,7 @@ with gr.Blocks(title=title) as demo:
|
|
122 |
main,
|
123 |
[prob1],
|
124 |
[label
|
125 |
-
,local_plot
|
126 |
-
# , htext
|
127 |
# , med, sym
|
128 |
], api_name="adr"
|
129 |
)
|
@@ -132,8 +129,7 @@ with gr.Blocks(title=title) as demo:
|
|
132 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
133 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
134 |
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
135 |
-
[prob1], [label,local_plot
|
136 |
-
# , htext
|
137 |
# , med, sym
|
138 |
], main, cache_examples=True)
|
139 |
|
|
|
42 |
# score_1sym = x['score']
|
43 |
# return round(score_1sym,3)
|
44 |
|
45 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
46 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
47 |
|
48 |
+
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
49 |
#
|
50 |
|
51 |
def adr_predict(x):
|
|
|
60 |
# med = med_score(classifier(x+str(", There is a medication."))[0])
|
61 |
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
|
62 |
|
63 |
+
res = ner_pipe(x)
|
64 |
|
65 |
+
entity_colors = {
|
66 |
+
'Severity': 'red',
|
67 |
+
'Sign_symptom': 'green',
|
68 |
+
'Medication': 'blue',
|
69 |
+
'Age': 'yellow',
|
70 |
+
'Sex':'yellow',
|
71 |
+
'Diagnostic_procedure':'gray',
|
72 |
+
'Biological_structure':'silver'}
|
73 |
+
|
74 |
+
htext = ""
|
75 |
+
prev_end = 0
|
76 |
+
|
77 |
+
for entity in res:
|
78 |
+
start = entity['start']
|
79 |
+
end = entity['end']
|
80 |
+
word = entity['word'].replace("##", "")
|
81 |
+
color = entity_colors[entity['entity_group']]
|
82 |
|
83 |
+
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
|
84 |
+
prev_end = end
|
85 |
|
86 |
+
htext += x[prev_end:]
|
87 |
|
88 |
+
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
|
|
|
89 |
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
|
90 |
|
91 |
|
92 |
def main(prob1):
|
93 |
text = str(prob1).lower()
|
94 |
obj = adr_predict(text)
|
95 |
+
return obj[0],obj[1],obj[2]
|
|
|
96 |
|
97 |
title = "Welcome to **ADR Detector** 🪐"
|
98 |
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
|
|
|
112 |
|
113 |
with gr.Column(visible=True) as output_col:
|
114 |
local_plot = gr.HTML(label = 'Shap:')
|
115 |
+
htext = gr.HTML(label="NER")
|
116 |
# med = gr.Label(label = "Contains Medication")
|
117 |
# sym = gr.Label(label = "Contains Symptoms")
|
118 |
|
|
|
120 |
main,
|
121 |
[prob1],
|
122 |
[label
|
123 |
+
,local_plot, htext
|
|
|
124 |
# , med, sym
|
125 |
], api_name="adr"
|
126 |
)
|
|
|
129 |
gr.Markdown("### Click on any of the examples below to see how it works:")
|
130 |
gr.Examples([["A 35 year-old male had severe headache after taking Aspirin. The lab results were normal."],
|
131 |
["A 35 year-old female had minor pain in upper abdomen after taking Acetaminophen."]],
|
132 |
+
[prob1], [label,local_plot, htext
|
|
|
133 |
# , med, sym
|
134 |
], main, cache_examples=True)
|
135 |
|