import streamlit as st import gradio as gr import shap import numpy as np import scipy as sp import torch import tensorflow as tf import transformers from transformers import RobertaTokenizer, RobertaModel from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer from transformers_interpret import SequenceClassificationExplainer tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1") model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1") modelc = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").cuda cls_explainer = SequenceClassificationExplainer( model, tokenizer) # define a prediction function def f(x): tv = torch.tensor([tokenizer.encode(v, padding='max_length', max_length=500, truncation=True) for v in x]).cuda() outputs = modelc(tv)[0].detach().cpu().numpy() scores = (np.exp(outputs).T / np.exp(outputs).sum(-1)).T val = sp.special.logit(scores[:,1]) # use one vs rest logit units return val def adr_predict(x): encoded_input = tokenizer(x, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = tf.nn.softmax(scores) # # build a pipeline object to do predictions # pred = transformers.pipeline("text-classification", model=model, # tokenizer=tokenizer, device=0, return_all_scores=True) # explainer = shap.Explainer(pred) # shap_values = explainer([x]) # shap_plot = shap.plots.text(shap_values) word_attributions = cls_explainer(str(x)) letter = [] score = [] for i in word_attributions: if i[1]>0.5: a = "++" elif (i[1]<=0.5) and (i[1]>0.1): a = "+" elif (i[1]>=-0.5) and (i[1]<-0.1): a = "-" elif i[1]<-0.5: a = "--" else: a = "NA" letter.append(i[0]) score.append(a) word_attributions = [(letter[i], score[i]) for i in range(0, len(letter))] # SHAP: # build an explainer using a token masker explainer = shap.Explainer(f, tokenizer) shap_values = explainer(str(x), fixed_context=1) # plot the first sentence's explanation plt = shap.plots.text(shap_values[0],display=False) return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, word_attributions,plt def main(text): text = str(text).lower() obj = adr_predict(text) return obj[0],obj[1],obj[2] title = "Welcome to **ADR Detector** 🪐" description1 = """ This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") text = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...") submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") # impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style( # color_map={"+++": "royalblue","++": "cornflowerblue", # "+": "lightsteelblue", "NA":"white"}) # NER = gr.HTML(label = 'NER:') intp = gr.HighlightedText(label="Word Scores", combine_adjacent=False).style(color_map={"++": "darkred","+": "red", "--": "darkblue", "-": "blue", "NA":"white"}) shap = gr.HighlightedText(label="SHAP Scores",combine_adjacent=False) submit_btn.click( main, [text], [label,intp,shap], api_name="adr" ) gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:") gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,intp,shap], main, cache_examples=True) demo.launch()