import streamlit as st import gradio as gr import shap import numpy as np import scipy as sp import torch import tensorflow as tf import transformers from transformers import pipeline from transformers import RobertaTokenizer, RobertaModel from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import matplotlib.pyplot as plt device = "cuda:0" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1") model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1").to(device) # build a pipeline object to do predictions pred = transformers.pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True) explainer = shap.Explainer(pred) ## classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base") def med_score(x): label = x['label'] score_1 = x['score'] return score_1 def sym_score(x): label2sym= x['label'] score_1sym = x['score'] return score_1sym ## def adr_predict(x): encoded_input = tokenizer(x, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = tf.nn.softmax(scores) shap_values = explainer([str(x).lower()]) local_plot = shap.plots.text(shap_values[0], display=False) med = med_score(classifier(x+str(", There is a medication."))[0]) sym = sym_score(classifier(x+str(", There is a symptom."))[0]) return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, {"Contains Medication": float(med), "No Medications": float(1-med)}, {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)} def main(prob1): text = str(prob1).lower() obj = adr_predict(text) return obj[0],obj[1],obj[2],obj[3] title = "Welcome to **ADR Detector** 🪐" description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis.""" with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...") submit_btn = gr.Button("Analyze") with gr.Row(): with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.HTML(label = 'Shap:') with gr.Column(visible=True) as output_col: med = gr.Label(label = "Contains Medication") sym = gr.Label(label = "Contains Symptoms") submit_btn.click( main, [prob1], [label ,local_plot, med, sym ], api_name="adr" ) gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:") gr.Examples([["I had severe headache after taking Aspirin."],["I had minor headache after taking Acetaminophen."]], [prob1], [label,local_plot, med, sym ], main, cache_examples=True) demo.launch()