import streamlit as st import gradio as gr import shap import numpy as np import scipy as sp import torch import transformers from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification import matplotlib.pyplot as plt import sys import csv csv.field_size_limit(sys.maxsize) device = "cuda:0" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained("jschwaller/ADRv2024") model = AutoModelForSequenceClassification.from_pretrained("jschwaller/ADRv2024") # Build a pipeline object for predictions pred = transformers.pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None) explainer = shap.Explainer(pred) ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all") ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu # entity_colors = { 'Severity': '#E63946', # a vivid red 'Sign_symptom': '#2A9D8F', # a deep teal 'Medication': '#457B9D', # a dusky blue 'Age': '#F4A261', # a sandy orange 'Sex': '#F4A261', # same sandy orange for consistency with 'Age' 'Diagnostic_procedure': '#9C6644', # a brown 'Biological_structure': '#BDB2FF', # a light pastel purple } def adr_predict(x): encoded_input = tokenizer(x, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach() scores = torch.nn.functional.softmax(scores) shap_values = explainer([str(x).lower()]) local_plot = shap.plots.text(shap_values[0], display=False) res = ner_pipe(x) htext = "" prev_end = 0 for entity in res: start = entity['start'] end = entity['end'] word = entity['word'].replace("##", "") color = entity_colors[entity['entity_group']] htext += f"{x[prev_end:start]}{word}" prev_end = end htext += x[prev_end:] return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, htext def main(prob1): text = str(prob1).lower() obj = adr_predict(text) return obj[0], obj[1], obj[2] # Define HTML for the legend legend_html = """

NER Legend

" # Create a Gradio HTML component to display the legend ner_legend = gr.HTML(value=legend_html) title = "Welcome to **ADR Tracker**" description1 = "This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medications. Please do NOT use for medical diagnosis." css = """ body { font-family: 'Roboto', sans-serif; background-color: #333; color: #163E64; } h1, h2, h3, h4, h5, h6, p, label, .markdown { color: #163E64; } /* Ensuring that all text elements are consistently light blue */ .textbox { width: 100%; border-radius: 10px; border: 1px solid #ccc; background-color: white; color: black; } .button { background-color: #FF6347; color: white; border: none; border-radius: 10px; padding: 10px 20px; cursor: pointer; } """ with gr.Blocks(css=css) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("---") prob1 = gr.Textbox(label="Enter Your Text Here:", lines=2, placeholder="Type it here...") submit_btn = gr.Button("Analyze") with gr.Row(): with gr.Column(visible=True): label = gr.Label(label="Predicted Label") with gr.Column(visible=True): local_plot = gr.HTML(label='Shap:') htext = gr.HTML(label="NER") submit_btn.click( main, [prob1], [label, local_plot, htext], api_name="adr" ) # Display the NER Legend below the buttons ner_legend # Assuming you've defined this component above as shown with gr.Row(): gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([["A 35 year-old female had suicidal ideation after taking Prednisone."], ["A 23 year-old male had minor nausea after taking Acetaminophen."]], [prob1], [label, local_plot, htext], main, cache_examples=True) demo.launch()