Spaces:
Runtime error
Runtime error
File size: 4,972 Bytes
a02c91f cb70de5 a02c91f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import streamlit as st
import gradio as gr
import shap
import numpy as np
import scipy as sp
import torch
import transformers
from transformers import pipeline
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
import matplotlib.pyplot as plt
import sys
import csv
csv.field_size_limit(sys.maxsize)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("NateMyers/HF-App-Mod4")
model = AutoModelForSequenceClassification.from_pretrained("NateMyers/HF-App-Mod4").to(device)
# build a pipeline object to do predictions
pred = transformers.pipeline("text-classification", model=model,
tokenizer=tokenizer, return_all_scores=True)
explainer = shap.Explainer(pred)
##
# classifier = transformers.pipeline("text-classification", model = "cross-encoder/qnli-electra-base")
# def med_score(x):
# label = x['label']
# score_1 = x['score']
# return round(score_1,3)
# def sym_score(x):
# label2sym= x['label']
# score_1sym = x['score']
# return round(score_1sym,3)
ner_tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
#
def adr_predict(x):
encoded_input = tokenizer(x, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach()
scores = torch.nn.functional.softmax(scores)
shap_values = explainer([str(x).lower()])
# # Find the index of the class you want as the default reference (e.g., 'label_1')
# label_1_index = np.where(np.array(explainer.output_names) == 'label_1')[0][0]
# # Plot the SHAP values for a specific instance in your dataset (e.g., instance 0)
# shap.plots.text(shap_values[label_1_index][0])
local_plot = shap.plots.text(shap_values[0], display=False)
# med = med_score(classifier(x+str(", There is a medication."))[0])
# sym = sym_score(classifier(x+str(", There is a symptom."))[0])
res = ner_pipe(x)
entity_colors = {
'Severity': 'red',
'Sign_symptom': 'green',
'Medication': 'lightblue',
'Age': 'yellow',
'Sex':'yellow',
'Diagnostic_procedure':'gray',
'Biological_structure':'silver'}
htext = ""
prev_end = 0
for entity in res:
start = entity['start']
end = entity['end']
word = entity['word'].replace("##", "")
color = entity_colors[entity['entity_group']]
htext += f"{x[prev_end:start]}<mark style='background-color:{color};'>{word}</mark>"
prev_end = end
htext += x[prev_end:]
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot,htext
# ,{"Contains Medication": float(med), "No Medications": float(1-med)} , {"Contains Symptoms": float(sym), "No Symptoms": float(1-sym)}
def main(prob1):
text = str(prob1).lower()
obj = adr_predict(text)
return obj[0],obj[1],obj[2]
title = "Welcome to **ADR Detector** 🪐"
description1 = """This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. Please do NOT use for medical diagnosis."""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Analyze")
with gr.Row():
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
with gr.Column(visible=True) as output_col:
local_plot = gr.HTML(label = 'Shap:')
htext = gr.HTML(label="NER")
# med = gr.Label(label = "Contains Medication")
# sym = gr.Label(label = "Contains Symptoms")
submit_btn.click(
main,
[prob1],
[label
,local_plot, htext
# , med, sym
], api_name="adr"
)
with gr.Row():
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([["Last night I took my prescribed medication and was feeling okay. This morning I have a severe headache and a bad fever. I think it may be getting worse."],
["This morning I took tylenol and carbamazepine. Now I have the chills and some other side effects"]],
[prob1], [label,local_plot, htext
# , med, sym
], main, cache_examples=True)
demo.launch() |