Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
from fastapi import FastAPI, HTTPException, Request
|
3 |
from pydantic import BaseModel
|
4 |
from llama_cpp import Llama
|
@@ -6,12 +5,19 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
6 |
import uvicorn
|
7 |
import re
|
8 |
from dotenv import load_dotenv
|
9 |
-
import
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
global_data = {
|
16 |
'models': {},
|
17 |
'tokens': {
|
@@ -57,7 +63,7 @@ class ModelManager:
|
|
57 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
58 |
except Exception as e:
|
59 |
print(f"Error loading model {model_config['name']}: {e}")
|
60 |
-
|
61 |
|
62 |
def load_all_models(self):
|
63 |
if self.loaded:
|
@@ -77,7 +83,6 @@ class ModelManager:
|
|
77 |
return global_data['models']
|
78 |
except Exception as e:
|
79 |
print(f"Error loading models: {e}")
|
80 |
-
pass
|
81 |
return {}
|
82 |
|
83 |
model_manager = ModelManager()
|
@@ -112,28 +117,24 @@ def remove_repetitive_responses(responses):
|
|
112 |
normalized_response = remove_duplicates(response['response'])
|
113 |
if normalized_response not in seen:
|
114 |
seen.add(normalized_response)
|
115 |
-
|
116 |
-
|
117 |
unique_responses.append({'model': response['model'], 'response': normalized_response})
|
118 |
return unique_responses
|
119 |
|
120 |
-
@app.post("/
|
121 |
-
|
122 |
-
async def chat(request: ChatRequest):
|
123 |
try:
|
124 |
normalized_message = normalize_input(request.message)
|
125 |
with ThreadPoolExecutor() as executor:
|
126 |
futures = [executor.submit(model.generate, f"<s>[INST]{normalized_message} [/INST]",
|
127 |
top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
128 |
for model in global_data['models'].values()]
|
129 |
-
responses = [
|
130 |
-
|
131 |
-
|
132 |
-
responses.append({'model': model_name, 'response': response})
|
133 |
unique_responses = remove_repetitive_responses(responses)
|
134 |
return unique_responses
|
135 |
except Exception as e:
|
136 |
-
raise HTTPException(status_code=500, detail=f"
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, Request
|
2 |
from pydantic import BaseModel
|
3 |
from llama_cpp import Llama
|
|
|
5 |
import uvicorn
|
6 |
import re
|
7 |
from dotenv import load_dotenv
|
8 |
+
from spaces import GPU
|
9 |
|
10 |
load_dotenv()
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Initialize ZeroGPU
|
15 |
+
try:
|
16 |
+
GPU.initialize()
|
17 |
+
except Exception as e:
|
18 |
+
print(f"ZeroGPU initialization failed: {e}")
|
19 |
+
|
20 |
+
# Global data dictionary
|
21 |
global_data = {
|
22 |
'models': {},
|
23 |
'tokens': {
|
|
|
63 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
64 |
except Exception as e:
|
65 |
print(f"Error loading model {model_config['name']}: {e}")
|
66 |
+
return None
|
67 |
|
68 |
def load_all_models(self):
|
69 |
if self.loaded:
|
|
|
83 |
return global_data['models']
|
84 |
except Exception as e:
|
85 |
print(f"Error loading models: {e}")
|
|
|
86 |
return {}
|
87 |
|
88 |
model_manager = ModelManager()
|
|
|
117 |
normalized_response = remove_duplicates(response['response'])
|
118 |
if normalized_response not in seen:
|
119 |
seen.add(normalized_response)
|
|
|
|
|
120 |
unique_responses.append({'model': response['model'], 'response': normalized_response})
|
121 |
return unique_responses
|
122 |
|
123 |
+
@app.post("/generate/")
|
124 |
+
async def generate(request: ChatRequest):
|
|
|
125 |
try:
|
126 |
normalized_message = normalize_input(request.message)
|
127 |
with ThreadPoolExecutor() as executor:
|
128 |
futures = [executor.submit(model.generate, f"<s>[INST]{normalized_message} [/INST]",
|
129 |
top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
130 |
for model in global_data['models'].values()]
|
131 |
+
responses = [{'model': model, 'response': future.result()}
|
132 |
+
for model, future in zip(global_data['models'].keys(), as_completed(futures))]
|
133 |
+
|
|
|
134 |
unique_responses = remove_repetitive_responses(responses)
|
135 |
return unique_responses
|
136 |
except Exception as e:
|
137 |
+
raise HTTPException(status_code=500, detail=f"Error generating responses: {e}")
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|