File size: 1,231 Bytes
af0c0e2
 
 
 
 
 
d359a51
af0c0e2
 
 
 
 
 
 
 
 
 
 
 
 
d359a51
 
 
 
 
 
 
 
 
 
 
 
af0c0e2
d359a51
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Emotion analysis
from src.exception.exception import customexception
from src.logger.logger import logging
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from scipy.special import softmax
import sys

# Pretrained model
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
sentiment_model = AutoModelForSequenceClassification.from_pretrained(MODEL)

class EmotionAnalyzer:
    def __init__(self):
        self.emotion_classifier = sentiment_model
        self.emotion = ''
    
    #  Roberta model
    def analyze_emotion(self, text):
        try:
            encoded_text = tokenizer(text, return_tensors='pt')
            output = self.emotion_classifier(**encoded_text)
            scores = output[0][0].detach().numpy()
            scores = softmax(scores)
            scores_dict = {
                'negative': scores[0],
                'neutral': scores[1],
                'positive': scores[2],
            }
            self.emotion = max(scores_dict)
            logging.info("Sentiment of response generated.")

            return self.emotion
        except Exception as e:
            raise customexception(e,sys)