Spaces:
Sleeping
Sleeping
File size: 13,673 Bytes
8bb477a 995af0f 565b90d 995af0f 46149cf 995af0f 565b90d 995af0f 565b90d 995af0f 565b90d 995af0f 565b90d 995af0f 565b90d 995af0f 565b90d 2941103 995af0f 565b90d 995af0f c5a4eb2 995af0f c5a4eb2 995af0f c5a4eb2 995af0f 4eed244 995af0f 4eed244 995af0f 8bb477a 995af0f 8bb477a 995af0f 3109ca5 995af0f 8bb477a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict, List, Optional, Union, Any
from pydantic import BaseModel, Field
from datetime import datetime
import logging
import json
import os
from dotenv import load_dotenv
from dify_client_python.dify_client import models
from sse_starlette.sse import EventSourceResponse
import httpx
from json_parser import SSEParser, MessageState
from logger_config import setup_logger
from fastapi.responses import StreamingResponse
from fastapi.responses import JSONResponse
from response_formatter import ResponseFormatter
import traceback
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class AgentOutput(BaseModel):
"""Structured output from agent processing"""
thought_content: str
observation: Optional[str]
tool_outputs: List[Dict]
citations: List[Dict]
metadata: Dict
raw_response: str
class AgentRequest(BaseModel):
"""Enhanced request model with additional parameters"""
query: str
conversation_id: Optional[str] = None
stream: bool = True
inputs: Dict = {}
files: List = []
user: str = "default_user"
response_mode: str = "streaming"
class AgentProcessor:
def __init__(self, api_key: str):
self.api_key = api_key
# Update API base to use environment variable with fallback
self.api_base = os.getenv(
"API_BASE_URL",
"https://severian.a.pinggy.link/v1"
)
self.formatter = ResponseFormatter()
self.client = httpx.AsyncClient(timeout=60.0)
self.logger = setup_logger("agent_processor")
# Initialize headers
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"Accept": "text/event-stream"
}
def prepare_request(self, request: AgentRequest) -> Dict:
"""Prepare request payload for API"""
return {
"query": request.query,
"inputs": request.inputs,
"response_mode": "streaming" if request.stream else "blocking",
"user": request.user,
"conversation_id": request.conversation_id,
"files": request.files
}
async def log_request_details(
self,
request: AgentRequest,
start_time: datetime
) -> None:
"""Log detailed request information"""
self.logger.debug(
"Request details: \n"
f"Query: {request.query}\n"
f"User: {request.user}\n"
f"Conversation ID: {request.conversation_id}\n"
f"Stream mode: {request.stream}\n"
f"Start time: {start_time}\n"
f"Inputs: {request.inputs}\n"
f"Files: {len(request.files)} files attached"
)
async def log_error(
self,
error: Exception,
context: Optional[Dict] = None
) -> None:
"""Log detailed error information"""
error_msg = (
f"Error type: {type(error).__name__}\n"
f"Error message: {str(error)}\n"
f"Stack trace:\n{traceback.format_exc()}\n"
)
if context:
error_msg += f"Context:\n{json.dumps(context, indent=2)}"
self.logger.error(error_msg)
async def cleanup(self):
"""Cleanup method to properly close client"""
await self.client.aclose()
async def process_stream(self, request: AgentRequest):
"""Process streaming request and format for frontend"""
parser = SSEParser()
formatter = ResponseFormatter()
async def event_generator():
try:
async with self.client.stream(
"POST",
f"{self.api_base}/chat-messages",
headers=self.headers,
json=self.prepare_request(request)
) as response:
async for line in response.aiter_lines():
if not line.strip():
continue
# Parse the event
parsed = parser.parse_sse_event(line)
if not parsed:
continue
event_type = parsed.get("type")
# Format based on type
if event_type == "message":
formatted = formatter.format_message(
message=parsed["content"],
message_id=parsed["message_id"]
)
elif event_type == "thought":
formatted = formatter.format_thought(
thought=parsed["content"]["thought"],
observation=parsed["content"]["observation"],
message_id=parsed["message_id"]
)
elif event_type == "tool_output":
# Special handling for tool outputs
formatted = formatter.format_thought(
thought="",
observation="",
tool_outputs=[{
"type": parsed["tool"],
"content": parsed["content"]
}],
message_id=parsed["message_id"]
)
else:
continue
if formatted:
_, xml_output = formatted
yield f"data: {xml_output}\n\n"
except Exception as e:
self.logger.error(f"Stream error: {str(e)}")
error_msg = formatter.format_error(str(e))
if error_msg:
_, xml_output = error_msg
yield f"data: {xml_output}\n\n"
return EventSourceResponse(event_generator())
def format_terminal_output(
self,
response: Dict,
citations: List[Dict] = None,
metadata: Dict = None,
tool_outputs: List[Dict] = None
) -> Optional[str]:
"""Format response for terminal output"""
event_type = response.get("event")
if event_type == "agent_thought":
thought = response.get("thought", "")
observation = response.get("observation", "")
terminal_output, _ = self.formatter.format_thought(
thought,
observation,
citations=citations,
metadata=metadata,
tool_outputs=tool_outputs
)
return terminal_output
elif event_type == "agent_message":
message = response.get("answer", "")
terminal_output, _ = self.formatter.format_message(message)
return terminal_output
elif event_type == "error":
error = response.get("error", "Unknown error")
terminal_output, _ = self.formatter.format_error(error)
return terminal_output
return None
def clean_response(self, response: Dict) -> Optional[Dict]:
"""Clean and transform the response for frontend consumption"""
try:
event_type = response.get("event")
if not event_type:
return None
# Handle different event types
if event_type == "agent_thought":
thought = response.get("thought", "")
observation = response.get("observation", "")
tool = response.get("tool", "")
# Handle mermaid diagram observations
if tool == "mermaid_diagram" and observation:
try:
# First check if observation is error message
if isinstance(observation, str):
obs_data = json.loads(observation)
if "mermaid_diagram" in obs_data:
if obs_data["mermaid_diagram"].startswith("tool invoke error"):
self.logger.warning(
f"Mermaid diagram tool error: {obs_data['mermaid_diagram']}"
)
return None
# Handle successful mermaid diagram
if isinstance(observation, dict):
mermaid_data = observation.get("mermaid_diagram", "")
else:
obs_data = json.loads(observation)
mermaid_data = obs_data.get("mermaid_diagram", "")
if mermaid_data:
# Handle nested JSON structure
if isinstance(mermaid_data, str):
mermaid_data = json.loads(mermaid_data)
# Extract diagram from either format
if isinstance(mermaid_data, dict):
diagram = mermaid_data.get("mermaid_diagram", "")
else:
diagram = mermaid_data
# Clean up the diagram code
if isinstance(diagram, str):
if "tool response:" in diagram:
diagram = diagram.split("tool response:")[0]
if diagram.startswith('{"mermaid_diagram": "'):
diagram = json.loads(diagram)["mermaid_diagram"]
if diagram.startswith("```mermaid\n"):
diagram = diagram[10:]
if diagram.endswith("\n```"):
diagram = diagram[:-4]
return {
"type": "mermaid_diagram",
"content": diagram.strip()
}
except (json.JSONDecodeError, KeyError) as e:
self.logger.error(f"Failed to parse mermaid diagram data: {str(e)}")
self.logger.debug(f"Raw observation: {observation}")
return None
# Handle regular thought
_, xml_output = self.formatter.format_thought(thought, observation)
return {
"type": "thought",
"content": xml_output
}
elif event_type == "agent_message":
message = response.get("answer", "")
_, xml_output = self.formatter.format_message(message)
return {
"type": "message",
"content": xml_output
}
elif event_type == "error":
error = response.get("error", "Unknown error")
_, xml_output = self.formatter.format_error(error)
return {
"type": "error",
"content": xml_output
}
return None
except Exception as e:
logger.error(f"Error cleaning response: {str(e)}")
return None
# Initialize FastAPI app
app = FastAPI()
agent_processor = None
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
global agent_processor
api_key = os.getenv("DIFY_API_KEY")
agent_processor = AgentProcessor(api_key=api_key)
@app.on_event("shutdown")
async def shutdown_event():
global agent_processor
if agent_processor:
await agent_processor.cleanup()
@app.post("/v1/agent")
async def process_agent_request(request: AgentRequest):
try:
logger.info(f"Processing agent request: {request.query}")
return await agent_processor.process_stream(request)
except Exception as e:
logger.error(f"Error in agent request processing: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
@app.middleware("http")
async def error_handling_middleware(request: Request, call_next):
try:
response = await call_next(request)
return response
except Exception as e:
logger.error(f"Unhandled error: {str(e)}", exc_info=True)
return JSONResponse(
status_code=500,
content={"error": "Internal server error occurred"}
)
# Add host and port parameters to the launch
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(
"api:app",
host="0.0.0.0",
port=port,
reload=True
) |