import pip pip.main(['install', 'torch']) pip.main(['install', 'transformers']) import torch import torch.nn as nn import gradio as gr import transformers from transformers import AutoTokenizer, AutoModelForSequenceClassification def load_model(model_name): # model_name = "Unggi/hate_speech_classifier_KcElectra" # model model = AutoModelForSequenceClassification.from_pretrained(model_name) # tokenizer.. tokenizer = AutoTokenizer.from_pretrained(model_name) return model, tokenizer def inference(prompt): model_name = "Unggi/hate_speech_classifier_KcElectra" #"Unggi/hate_speech_bert" model, tokenizer = load_model( model_name = model_name ) inputs = tokenizer( prompt, return_tensors="pt" ) with torch.no_grad(): logits = model(**inputs).logits # for binary classification sigmoid = nn.Sigmoid() bi_prob = sigmoid(logits) predicted_class_id = bi_prob.argmax().item() class_id = model.config.id2label[predicted_class_id] return "class_id: " + str(class_id) + "\n" + "clean_prob: " + str(bi_prob[0][0].item()) + "\n" + "unclean_prob: " + str(bi_prob[0][1].item()) demo = gr.Interface( fn=inference, inputs="text", outputs="text", #return 값 ).launch()