|
import math
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from munch import Munch
|
|
import json
|
|
|
|
|
|
class AttrDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
super(AttrDict, self).__init__(*args, **kwargs)
|
|
self.__dict__ = self
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
def convert_pad_shape(pad_shape):
|
|
l = pad_shape[::-1]
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
return pad_shape
|
|
|
|
|
|
def intersperse(lst, item):
|
|
result = [item] * (len(lst) * 2 + 1)
|
|
result[1::2] = lst
|
|
return result
|
|
|
|
|
|
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
|
"""KL(P||Q)"""
|
|
kl = (logs_q - logs_p) - 0.5
|
|
kl += (
|
|
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
|
)
|
|
return kl
|
|
|
|
|
|
def rand_gumbel(shape):
|
|
"""Sample from the Gumbel distribution, protect from overflows."""
|
|
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
|
return -torch.log(-torch.log(uniform_samples))
|
|
|
|
|
|
def rand_gumbel_like(x):
|
|
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
|
return g
|
|
|
|
|
|
def slice_segments(x, ids_str, segment_size=4):
|
|
ret = torch.zeros_like(x[:, :, :segment_size])
|
|
for i in range(x.size(0)):
|
|
idx_str = ids_str[i]
|
|
idx_end = idx_str + segment_size
|
|
ret[i] = x[i, :, idx_str:idx_end]
|
|
return ret
|
|
|
|
|
|
def slice_segments_audio(x, ids_str, segment_size=4):
|
|
ret = torch.zeros_like(x[:, :segment_size])
|
|
for i in range(x.size(0)):
|
|
idx_str = ids_str[i]
|
|
idx_end = idx_str + segment_size
|
|
ret[i] = x[i, idx_str:idx_end]
|
|
return ret
|
|
|
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
|
b, d, t = x.size()
|
|
if x_lengths is None:
|
|
x_lengths = t
|
|
ids_str_max = x_lengths - segment_size + 1
|
|
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
|
dtype=torch.long
|
|
)
|
|
ret = slice_segments(x, ids_str, segment_size)
|
|
return ret, ids_str
|
|
|
|
|
|
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
|
position = torch.arange(length, dtype=torch.float)
|
|
num_timescales = channels // 2
|
|
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
|
num_timescales - 1
|
|
)
|
|
inv_timescales = min_timescale * torch.exp(
|
|
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
|
)
|
|
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
|
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
|
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
|
signal = signal.view(1, channels, length)
|
|
return signal
|
|
|
|
|
|
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
|
b, channels, length = x.size()
|
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
return x + signal.to(dtype=x.dtype, device=x.device)
|
|
|
|
|
|
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
|
b, channels, length = x.size()
|
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
|
|
|
|
|
def subsequent_mask(length):
|
|
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
|
return mask
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
in_act = input_a + input_b
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
def convert_pad_shape(pad_shape):
|
|
l = pad_shape[::-1]
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
return pad_shape
|
|
|
|
|
|
def shift_1d(x):
|
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
|
return x
|
|
|
|
|
|
def sequence_mask(length, max_length=None):
|
|
if max_length is None:
|
|
max_length = length.max()
|
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
|
|
|
|
def avg_with_mask(x, mask):
|
|
assert mask.dtype == torch.float, "Mask should be float"
|
|
|
|
if mask.ndim == 2:
|
|
mask = mask.unsqueeze(1)
|
|
|
|
if mask.shape[1] == 1:
|
|
mask = mask.expand_as(x)
|
|
|
|
return (x * mask).sum() / mask.sum()
|
|
|
|
|
|
def generate_path(duration, mask):
|
|
"""
|
|
duration: [b, 1, t_x]
|
|
mask: [b, 1, t_y, t_x]
|
|
"""
|
|
device = duration.device
|
|
|
|
b, _, t_y, t_x = mask.shape
|
|
cum_duration = torch.cumsum(duration, -1)
|
|
|
|
cum_duration_flat = cum_duration.view(b * t_x)
|
|
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
|
path = path.view(b, t_x, t_y)
|
|
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
|
path = path.unsqueeze(1).transpose(2, 3) * mask
|
|
return path
|
|
|
|
|
|
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
|
if isinstance(parameters, torch.Tensor):
|
|
parameters = [parameters]
|
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
norm_type = float(norm_type)
|
|
if clip_value is not None:
|
|
clip_value = float(clip_value)
|
|
|
|
total_norm = 0
|
|
for p in parameters:
|
|
param_norm = p.grad.data.norm(norm_type)
|
|
total_norm += param_norm.item() ** norm_type
|
|
if clip_value is not None:
|
|
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
|
total_norm = total_norm ** (1.0 / norm_type)
|
|
return total_norm
|
|
|
|
|
|
def log_norm(x, mean=-4, std=4, dim=2):
|
|
"""
|
|
normalized log mel -> mel -> norm -> log(norm)
|
|
"""
|
|
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
|
return x
|
|
|
|
|
|
def load_F0_models(path):
|
|
|
|
from .JDC.model import JDCNet
|
|
|
|
F0_model = JDCNet(num_class=1, seq_len=192)
|
|
params = torch.load(path, map_location="cpu")["net"]
|
|
F0_model.load_state_dict(params)
|
|
_ = F0_model.train()
|
|
|
|
return F0_model
|
|
|
|
|
|
def modify_w2v_forward(self, output_layer=15):
|
|
"""
|
|
change forward method of w2v encoder to get its intermediate layer output
|
|
:param self:
|
|
:param layer:
|
|
:return:
|
|
"""
|
|
from transformers.modeling_outputs import BaseModelOutput
|
|
|
|
def forward(
|
|
hidden_states,
|
|
attention_mask=None,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict=True,
|
|
):
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
conv_attention_mask = attention_mask
|
|
if attention_mask is not None:
|
|
|
|
hidden_states = hidden_states.masked_fill(
|
|
~attention_mask.bool().unsqueeze(-1), 0.0
|
|
)
|
|
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
|
dtype=hidden_states.dtype
|
|
)
|
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
|
attention_mask = attention_mask.expand(
|
|
attention_mask.shape[0],
|
|
1,
|
|
attention_mask.shape[-1],
|
|
attention_mask.shape[-1],
|
|
)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
if self.embed_positions is not None:
|
|
relative_position_embeddings = self.embed_positions(hidden_states)
|
|
else:
|
|
relative_position_embeddings = None
|
|
|
|
deepspeed_zero3_is_enabled = False
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
dropout_probability = torch.rand([])
|
|
|
|
skip_the_layer = (
|
|
True
|
|
if self.training and (dropout_probability < self.config.layerdrop)
|
|
else False
|
|
)
|
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
relative_position_embeddings,
|
|
output_attentions,
|
|
conv_attention_mask,
|
|
)
|
|
else:
|
|
layer_outputs = layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
relative_position_embeddings=relative_position_embeddings,
|
|
output_attentions=output_attentions,
|
|
conv_attention_mask=conv_attention_mask,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if skip_the_layer:
|
|
layer_outputs = (None, None)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
|
|
if i == output_layer - 1:
|
|
break
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
return forward
|
|
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
if not MATPLOTLIB_FLAG:
|
|
import matplotlib
|
|
import logging
|
|
|
|
matplotlib.use("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
mpl_logger = logging.getLogger("matplotlib")
|
|
mpl_logger.setLevel(logging.WARNING)
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def normalize_f0(f0_sequence):
|
|
|
|
voiced_indices = np.where(f0_sequence > 0)[0]
|
|
f0_voiced = f0_sequence[voiced_indices]
|
|
|
|
|
|
log_f0 = np.log2(f0_voiced)
|
|
|
|
|
|
mean_f0 = np.mean(log_f0)
|
|
std_f0 = np.std(log_f0)
|
|
|
|
|
|
normalized_f0 = (log_f0 - mean_f0) / std_f0
|
|
|
|
|
|
normalized_sequence = np.zeros_like(f0_sequence)
|
|
normalized_sequence[voiced_indices] = normalized_f0
|
|
normalized_sequence[f0_sequence <= 0] = -1
|
|
|
|
return normalized_sequence
|
|
|
|
|
|
def build_model(args, stage="DiT"):
|
|
if stage == "DiT":
|
|
from modules.flow_matching import CFM
|
|
from modules.length_regulator import InterpolateRegulator
|
|
|
|
length_regulator = InterpolateRegulator(
|
|
channels=args.length_regulator.channels,
|
|
sampling_ratios=args.length_regulator.sampling_ratios,
|
|
is_discrete=args.length_regulator.is_discrete,
|
|
codebook_size=args.length_regulator.content_codebook_size,
|
|
)
|
|
cfm = CFM(args)
|
|
nets = Munch(
|
|
cfm=cfm,
|
|
length_regulator=length_regulator,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown stage: {stage}")
|
|
|
|
return nets
|
|
|
|
|
|
def load_checkpoint(
|
|
model,
|
|
optimizer,
|
|
path,
|
|
load_only_params=True,
|
|
ignore_modules=[],
|
|
is_distributed=False,
|
|
):
|
|
state = torch.load(path, map_location="cpu")
|
|
params = state["net"]
|
|
for key in model:
|
|
if key in params and key not in ignore_modules:
|
|
if not is_distributed:
|
|
|
|
for k in list(params[key].keys()):
|
|
if k.startswith("module."):
|
|
params[key][k[len("module.") :]] = params[key][k]
|
|
del params[key][k]
|
|
model_state_dict = model[key].state_dict()
|
|
|
|
filtered_state_dict = {
|
|
k: v
|
|
for k, v in params[key].items()
|
|
if k in model_state_dict and v.shape == model_state_dict[k].shape
|
|
}
|
|
skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys())
|
|
if skipped_keys:
|
|
print(
|
|
f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}"
|
|
)
|
|
print("%s loaded" % key)
|
|
model[key].load_state_dict(filtered_state_dict, strict=False)
|
|
_ = [model[key].eval() for key in model]
|
|
|
|
if not load_only_params:
|
|
epoch = state["epoch"] + 1
|
|
iters = state["iters"]
|
|
optimizer.load_state_dict(state["optimizer"])
|
|
optimizer.load_scheduler_state_dict(state["scheduler"])
|
|
|
|
else:
|
|
epoch = 0
|
|
iters = 0
|
|
|
|
return model, optimizer, epoch, iters
|
|
|
|
|
|
def recursive_munch(d):
|
|
if isinstance(d, dict):
|
|
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
|
elif isinstance(d, list):
|
|
return [recursive_munch(v) for v in d]
|
|
else:
|
|
return d
|
|
|