|
from typing import Tuple
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from modules.commons import sequence_mask
|
|
|
|
|
|
class InterpolateRegulator(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
sampling_ratios: Tuple,
|
|
is_discrete: bool = False,
|
|
codebook_size: int = 1024,
|
|
out_channels: int = None,
|
|
groups: int = 1,
|
|
):
|
|
super().__init__()
|
|
self.sampling_ratios = sampling_ratios
|
|
out_channels = out_channels or channels
|
|
model = nn.ModuleList([])
|
|
if len(sampling_ratios) > 0:
|
|
for _ in sampling_ratios:
|
|
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
|
norm = nn.GroupNorm(groups, channels)
|
|
act = nn.Mish()
|
|
model.extend([module, norm, act])
|
|
model.append(
|
|
nn.Conv1d(channels, out_channels, 1, 1)
|
|
)
|
|
self.model = nn.Sequential(*model)
|
|
self.embedding = nn.Embedding(codebook_size, channels)
|
|
self.is_discrete = is_discrete
|
|
|
|
def forward(self, x, ylens=None):
|
|
if self.is_discrete:
|
|
x = self.embedding(x)
|
|
|
|
mask = sequence_mask(ylens).unsqueeze(-1)
|
|
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
|
out = self.model(x).transpose(1, 2).contiguous()
|
|
olens = ylens
|
|
return out * mask, olens
|
|
|