|
import gradio as gr
|
|
import torch
|
|
import torchaudio
|
|
import librosa
|
|
from modules.commons import build_model, load_checkpoint, recursive_munch
|
|
import yaml
|
|
from hf_utils import load_custom_model_from_hf
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
|
"DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
|
|
"config_dit_mel_seed_facodec_small_wavenet.yml")
|
|
|
|
config = yaml.safe_load(open(dit_config_path, 'r'))
|
|
model_params = recursive_munch(config['model_params'])
|
|
model = build_model(model_params, stage='DiT')
|
|
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
|
sr = config['preprocess_params']['sr']
|
|
|
|
|
|
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
|
load_only_params=True, ignore_modules=[], is_distributed=False)
|
|
for key in model:
|
|
model[key].eval()
|
|
model[key].to(device)
|
|
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
|
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus
|
|
|
|
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
|
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
|
|
campplus_model.eval()
|
|
campplus_model.to(device)
|
|
|
|
from modules.hifigan.generator import HiFTGenerator
|
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
|
|
|
|
hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
|
"hift.pt",
|
|
"hifigan.yml")
|
|
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
|
|
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
|
|
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
|
|
hift_gen.eval()
|
|
hift_gen.to(device)
|
|
|
|
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
|
|
if speech_tokenizer_type == 'cosyvoice':
|
|
from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
|
|
speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
|
|
cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
|
|
device='cuda', device_id=0)
|
|
elif speech_tokenizer_type == 'facodec':
|
|
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
|
|
|
|
codec_config = yaml.safe_load(open(config_path))
|
|
codec_model_params = recursive_munch(codec_config['model_params'])
|
|
codec_encoder = build_model(codec_model_params, stage="codec")
|
|
|
|
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
|
|
|
for key in codec_encoder:
|
|
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
|
|
_ = [codec_encoder[key].eval() for key in codec_encoder]
|
|
_ = [codec_encoder[key].to(device) for key in codec_encoder]
|
|
|
|
mel_fn_args = {
|
|
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
|
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
|
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
|
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
|
"sampling_rate": sr,
|
|
"fmin": 0,
|
|
"fmax": 8000,
|
|
"center": False
|
|
}
|
|
from modules.audio import mel_spectrogram
|
|
|
|
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
|
|
|
|
source_audio = librosa.load(source, sr=sr)[0]
|
|
ref_audio = librosa.load(target, sr=sr)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
|
ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)
|
|
|
|
|
|
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
|
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
|
|
|
|
|
if speech_tokenizer_type == 'cosyvoice':
|
|
S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
|
|
S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
|
|
elif speech_tokenizer_type == 'facodec':
|
|
converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
|
|
wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
|
|
waves_input = converted_waves_24k.unsqueeze(1)
|
|
z = codec_encoder.encoder(waves_input)
|
|
(
|
|
quantized,
|
|
codes
|
|
) = codec_encoder.quantizer(
|
|
z,
|
|
waves_input,
|
|
)
|
|
S_alt = torch.cat([codes[1], codes[0]], dim=1)
|
|
|
|
|
|
waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
|
|
waves_input = waves_24k.unsqueeze(1)
|
|
z = codec_encoder.encoder(waves_input)
|
|
(
|
|
quantized,
|
|
codes
|
|
) = codec_encoder.quantizer(
|
|
z,
|
|
waves_input,
|
|
)
|
|
S_ori = torch.cat([codes[1], codes[0]], dim=1)
|
|
|
|
mel = to_mel(source_audio.to(device).float())
|
|
mel2 = to_mel(ref_audio.to(device).float())
|
|
|
|
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
|
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
|
|
|
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
|
num_mel_bins=80,
|
|
dither=0,
|
|
sample_frequency=16000)
|
|
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
|
style2 = campplus_model(feat2.unsqueeze(0))
|
|
|
|
|
|
cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
|
|
prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
|
|
cat_condition = torch.cat([prompt_condition, cond], dim=1)
|
|
|
|
|
|
vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
|
mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
|
|
vc_target = vc_target[:, :, mel2.size(-1):]
|
|
|
|
|
|
vc_wave = hift_gen.inference(vc_target)
|
|
|
|
return sr, vc_wave.squeeze(0).cpu().numpy()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
|
|
inputs = [
|
|
gr.Audio(type="filepath", label="Source Audio"),
|
|
gr.Audio(type="filepath", label="Reference Audio"),
|
|
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
|
|
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
|
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
|
|
gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
|
|
]
|
|
|
|
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]
|
|
|
|
outputs = gr.Audio(label="Output Audio")
|
|
|
|
gr.Interface(fn=voice_conversion,
|
|
description=description,
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
title="Seed Voice Conversion",
|
|
examples=examples,
|
|
).launch() |