|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from audiotools import AudioSignal
|
|
from audiotools import ml
|
|
from audiotools import STFTParams
|
|
from einops import rearrange
|
|
from torch.nn.utils import weight_norm
|
|
|
|
|
|
def WNConv1d(*args, **kwargs):
|
|
act = kwargs.pop("act", True)
|
|
conv = weight_norm(nn.Conv1d(*args, **kwargs))
|
|
if not act:
|
|
return conv
|
|
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
|
|
|
|
|
def WNConv2d(*args, **kwargs):
|
|
act = kwargs.pop("act", True)
|
|
conv = weight_norm(nn.Conv2d(*args, **kwargs))
|
|
if not act:
|
|
return conv
|
|
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
|
|
|
|
|
class MPD(nn.Module):
|
|
def __init__(self, period):
|
|
super().__init__()
|
|
self.period = period
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
|
|
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
|
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
|
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
|
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
|
]
|
|
)
|
|
self.conv_post = WNConv2d(
|
|
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
|
)
|
|
|
|
def pad_to_period(self, x):
|
|
t = x.shape[-1]
|
|
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
|
return x
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
x = self.pad_to_period(x)
|
|
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
|
|
|
for layer in self.convs:
|
|
x = layer(x)
|
|
fmap.append(x)
|
|
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
|
|
return fmap
|
|
|
|
|
|
class MSD(nn.Module):
|
|
def __init__(self, rate: int = 1, sample_rate: int = 44100):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
WNConv1d(1, 16, 15, 1, padding=7),
|
|
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
|
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
|
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
|
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
|
WNConv1d(1024, 1024, 5, 1, padding=2),
|
|
]
|
|
)
|
|
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
|
self.sample_rate = sample_rate
|
|
self.rate = rate
|
|
|
|
def forward(self, x):
|
|
x = AudioSignal(x, self.sample_rate)
|
|
x.resample(self.sample_rate // self.rate)
|
|
x = x.audio_data
|
|
|
|
fmap = []
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
|
|
return fmap
|
|
|
|
|
|
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
|
|
|
|
|
class MRD(nn.Module):
|
|
def __init__(
|
|
self,
|
|
window_length: int,
|
|
hop_factor: float = 0.25,
|
|
sample_rate: int = 44100,
|
|
bands: list = BANDS,
|
|
):
|
|
"""Complex multi-band spectrogram discriminator.
|
|
Parameters
|
|
----------
|
|
window_length : int
|
|
Window length of STFT.
|
|
hop_factor : float, optional
|
|
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
|
sample_rate : int, optional
|
|
Sampling rate of audio in Hz, by default 44100
|
|
bands : list, optional
|
|
Bands to run discriminator over.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.window_length = window_length
|
|
self.hop_factor = hop_factor
|
|
self.sample_rate = sample_rate
|
|
self.stft_params = STFTParams(
|
|
window_length=window_length,
|
|
hop_length=int(window_length * hop_factor),
|
|
match_stride=True,
|
|
)
|
|
|
|
n_fft = window_length // 2 + 1
|
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
|
self.bands = bands
|
|
|
|
ch = 32
|
|
convs = lambda: nn.ModuleList(
|
|
[
|
|
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
|
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
|
]
|
|
)
|
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
|
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
|
|
|
def spectrogram(self, x):
|
|
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
|
x = torch.view_as_real(x.stft())
|
|
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
|
|
|
|
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
|
return x_bands
|
|
|
|
def forward(self, x):
|
|
x_bands = self.spectrogram(x)
|
|
fmap = []
|
|
|
|
x = []
|
|
for band, stack in zip(x_bands, self.band_convs):
|
|
for layer in stack:
|
|
band = layer(band)
|
|
fmap.append(band)
|
|
x.append(band)
|
|
|
|
x = torch.cat(x, dim=-1)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
|
|
return fmap
|
|
|
|
|
|
class Discriminator(nn.Module):
|
|
def __init__(
|
|
self,
|
|
rates: list = [],
|
|
periods: list = [2, 3, 5, 7, 11],
|
|
fft_sizes: list = [2048, 1024, 512],
|
|
sample_rate: int = 44100,
|
|
bands: list = BANDS,
|
|
):
|
|
"""Discriminator that combines multiple discriminators.
|
|
|
|
Parameters
|
|
----------
|
|
rates : list, optional
|
|
sampling rates (in Hz) to run MSD at, by default []
|
|
If empty, MSD is not used.
|
|
periods : list, optional
|
|
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
|
fft_sizes : list, optional
|
|
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
|
sample_rate : int, optional
|
|
Sampling rate of audio in Hz, by default 44100
|
|
bands : list, optional
|
|
Bands to run MRD at, by default `BANDS`
|
|
"""
|
|
super().__init__()
|
|
discs = []
|
|
discs += [MPD(p) for p in periods]
|
|
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
|
|
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
|
|
self.discriminators = nn.ModuleList(discs)
|
|
|
|
def preprocess(self, y):
|
|
|
|
y = y - y.mean(dim=-1, keepdims=True)
|
|
|
|
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
|
return y
|
|
|
|
def forward(self, x):
|
|
x = self.preprocess(x)
|
|
fmaps = [d(x) for d in self.discriminators]
|
|
return fmaps
|
|
|
|
|
|
if __name__ == "__main__":
|
|
disc = Discriminator()
|
|
x = torch.zeros(1, 1, 44100)
|
|
results = disc(x)
|
|
for i, result in enumerate(results):
|
|
print(f"disc{i}")
|
|
for i, r in enumerate(result):
|
|
print(r.shape, r.mean(), r.min(), r.max())
|
|
print()
|
|
|