|
|
|
|
|
|
|
|
|
|
|
|
|
"""Convolutional layers wrappers and utilities."""
|
|
|
|
import math
|
|
import typing as tp
|
|
import warnings
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import spectral_norm, weight_norm
|
|
|
|
import typing as tp
|
|
|
|
import einops
|
|
|
|
|
|
class ConvLayerNorm(nn.LayerNorm):
|
|
"""
|
|
Convolution-friendly LayerNorm that moves channels to last dimensions
|
|
before running the normalization and moves them back to original position right after.
|
|
"""
|
|
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
|
|
super().__init__(normalized_shape, **kwargs)
|
|
|
|
def forward(self, x):
|
|
x = einops.rearrange(x, 'b ... t -> b t ...')
|
|
x = super().forward(x)
|
|
x = einops.rearrange(x, 'b t ... -> b ... t')
|
|
return
|
|
|
|
|
|
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
|
|
'time_layer_norm', 'layer_norm', 'time_group_norm'])
|
|
|
|
|
|
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
|
|
assert norm in CONV_NORMALIZATIONS
|
|
if norm == 'weight_norm':
|
|
return weight_norm(module)
|
|
elif norm == 'spectral_norm':
|
|
return spectral_norm(module)
|
|
else:
|
|
|
|
|
|
return module
|
|
|
|
|
|
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
|
|
"""Return the proper normalization module. If causal is True, this will ensure the returned
|
|
module is causal, or return an error if the normalization doesn't support causal evaluation.
|
|
"""
|
|
assert norm in CONV_NORMALIZATIONS
|
|
if norm == 'layer_norm':
|
|
assert isinstance(module, nn.modules.conv._ConvNd)
|
|
return ConvLayerNorm(module.out_channels, **norm_kwargs)
|
|
elif norm == 'time_group_norm':
|
|
if causal:
|
|
raise ValueError("GroupNorm doesn't support causal evaluation.")
|
|
assert isinstance(module, nn.modules.conv._ConvNd)
|
|
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
|
|
else:
|
|
return nn.Identity()
|
|
|
|
|
|
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
|
padding_total: int = 0) -> int:
|
|
"""See `pad_for_conv1d`.
|
|
"""
|
|
length = x.shape[-1]
|
|
n_frames = (length - kernel_size + padding_total) / stride + 1
|
|
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
|
return ideal_length - length
|
|
|
|
|
|
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
|
"""Pad for a convolution to make sure that the last window is full.
|
|
Extra padding is added at the end. This is required to ensure that we can rebuild
|
|
an output of the same length, as otherwise, even with padding, some time steps
|
|
might get removed.
|
|
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
|
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
|
1 2 3 # (output frames of a convolution, last 0 is never used)
|
|
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
|
1 2 3 4 # once you removed padding, we are missing one time step !
|
|
"""
|
|
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
|
return F.pad(x, (0, extra_padding))
|
|
|
|
|
|
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
|
|
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
|
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
|
"""
|
|
length = x.shape[-1]
|
|
padding_left, padding_right = paddings
|
|
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
|
if mode == 'reflect':
|
|
max_pad = max(padding_left, padding_right)
|
|
extra_pad = 0
|
|
if length <= max_pad:
|
|
extra_pad = max_pad - length + 1
|
|
x = F.pad(x, (0, extra_pad))
|
|
padded = F.pad(x, paddings, mode, value)
|
|
end = padded.shape[-1] - extra_pad
|
|
return padded[..., :end]
|
|
else:
|
|
return F.pad(x, paddings, mode, value)
|
|
|
|
|
|
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
|
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
|
padding_left, padding_right = paddings
|
|
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
|
assert (padding_left + padding_right) <= x.shape[-1]
|
|
end = x.shape[-1] - padding_right
|
|
return x[..., padding_left: end]
|
|
|
|
|
|
class NormConv1d(nn.Module):
|
|
"""Wrapper around Conv1d and normalization applied to this conv
|
|
to provide a uniform interface across normalization approaches.
|
|
"""
|
|
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
super().__init__()
|
|
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
|
|
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
|
|
self.norm_type = norm
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class NormConv2d(nn.Module):
|
|
"""Wrapper around Conv2d and normalization applied to this conv
|
|
to provide a uniform interface across normalization approaches.
|
|
"""
|
|
def __init__(self, *args, norm: str = 'none',
|
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
super().__init__()
|
|
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
|
|
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
|
|
self.norm_type = norm
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class NormConvTranspose1d(nn.Module):
|
|
"""Wrapper around ConvTranspose1d and normalization applied to this conv
|
|
to provide a uniform interface across normalization approaches.
|
|
"""
|
|
def __init__(self, *args, causal: bool = False, norm: str = 'none',
|
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
super().__init__()
|
|
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
|
|
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
|
|
self.norm_type = norm
|
|
|
|
def forward(self, x):
|
|
x = self.convtr(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class NormConvTranspose2d(nn.Module):
|
|
"""Wrapper around ConvTranspose2d and normalization applied to this conv
|
|
to provide a uniform interface across normalization approaches.
|
|
"""
|
|
def __init__(self, *args, norm: str = 'none',
|
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
super().__init__()
|
|
self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
|
|
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)
|
|
|
|
def forward(self, x):
|
|
x = self.convtr(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
class SConv1d(nn.Module):
|
|
"""Conv1d with some builtin handling of asymmetric or causal padding
|
|
and normalization.
|
|
"""
|
|
def __init__(self, in_channels: int, out_channels: int,
|
|
kernel_size: int, stride: int = 1, dilation: int = 1,
|
|
groups: int = 1, bias: bool = True, causal: bool = False,
|
|
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
|
|
pad_mode: str = 'reflect', **kwargs):
|
|
super().__init__()
|
|
|
|
if stride > 1 and dilation > 1:
|
|
warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1'
|
|
f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).')
|
|
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
|
|
dilation=dilation, groups=groups, bias=bias, causal=causal,
|
|
norm=norm, norm_kwargs=norm_kwargs)
|
|
self.causal = causal
|
|
self.pad_mode = pad_mode
|
|
|
|
self.cache_enabled = False
|
|
|
|
def reset_cache(self):
|
|
"""Reset the cache when starting a new stream."""
|
|
self.cache = None
|
|
self.cache_enabled = True
|
|
|
|
def forward(self, x):
|
|
B, C, T = x.shape
|
|
kernel_size = self.conv.conv.kernel_size[0]
|
|
stride = self.conv.conv.stride[0]
|
|
dilation = self.conv.conv.dilation[0]
|
|
kernel_size = (kernel_size - 1) * dilation + 1
|
|
padding_total = kernel_size - stride
|
|
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
|
|
|
if self.causal:
|
|
|
|
if self.cache_enabled and self.cache is not None:
|
|
|
|
x = torch.cat([self.cache, x], dim=2)
|
|
else:
|
|
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
|
|
else:
|
|
|
|
padding_right = padding_total // 2
|
|
padding_left = padding_total - padding_right
|
|
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
|
|
|
|
|
|
if self.cache_enabled:
|
|
if self.cache is None:
|
|
|
|
self.cache = torch.zeros(B, C, kernel_size - 1, device=x.device)
|
|
|
|
if kernel_size > 1:
|
|
self.cache = x[:, :, -kernel_size + 1:].detach()
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
class SConvTranspose1d(nn.Module):
|
|
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding
|
|
and normalization.
|
|
"""
|
|
def __init__(self, in_channels: int, out_channels: int,
|
|
kernel_size: int, stride: int = 1, causal: bool = False,
|
|
norm: str = 'none', trim_right_ratio: float = 1.,
|
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
|
|
super().__init__()
|
|
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
|
|
causal=causal, norm=norm, norm_kwargs=norm_kwargs)
|
|
self.causal = causal
|
|
self.trim_right_ratio = trim_right_ratio
|
|
assert self.causal or self.trim_right_ratio == 1., \
|
|
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
|
|
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
|
|
|
|
def forward(self, x):
|
|
kernel_size = self.convtr.convtr.kernel_size[0]
|
|
stride = self.convtr.convtr.stride[0]
|
|
padding_total = kernel_size - stride
|
|
|
|
y = self.convtr(x)
|
|
|
|
|
|
|
|
|
|
|
|
if self.causal:
|
|
|
|
|
|
padding_right = math.ceil(padding_total * self.trim_right_ratio)
|
|
padding_left = padding_total - padding_right
|
|
y = unpad1d(y, (padding_left, padding_right))
|
|
else:
|
|
|
|
padding_right = padding_total // 2
|
|
padding_left = padding_total - padding_right
|
|
y = unpad1d(y, (padding_left, padding_right))
|
|
return y
|
|
|
|
class SLSTM(nn.Module):
|
|
"""
|
|
LSTM without worrying about the hidden state, nor the layout of the data.
|
|
Expects input as convolutional layout.
|
|
"""
|
|
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True):
|
|
super().__init__()
|
|
self.skip = skip
|
|
self.lstm = nn.LSTM(dimension, dimension, num_layers)
|
|
self.hidden = None
|
|
self.cache_enabled = False
|
|
|
|
def forward(self, x):
|
|
x = x.permute(2, 0, 1)
|
|
if self.training or not self.cache_enabled:
|
|
y, _ = self.lstm(x)
|
|
else:
|
|
y, self.hidden = self.lstm(x, self.hidden)
|
|
if self.skip:
|
|
y = y + x
|
|
y = y.permute(1, 2, 0)
|
|
return y
|
|
|
|
def reset_cache(self):
|
|
self.hidden = None
|
|
self.cache_enabled = True |