|
import typing
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from audiotools import AudioSignal
|
|
from audiotools import STFTParams
|
|
from torch import nn
|
|
|
|
|
|
class L1Loss(nn.L1Loss):
|
|
"""L1 Loss between AudioSignals. Defaults
|
|
to comparing ``audio_data``, but any
|
|
attribute of an AudioSignal can be used.
|
|
|
|
Parameters
|
|
----------
|
|
attribute : str, optional
|
|
Attribute of signal to compare, defaults to ``audio_data``.
|
|
weight : float, optional
|
|
Weight of this loss, defaults to 1.0.
|
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
|
"""
|
|
|
|
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
|
self.attribute = attribute
|
|
self.weight = weight
|
|
super().__init__(**kwargs)
|
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
"""
|
|
Parameters
|
|
----------
|
|
x : AudioSignal
|
|
Estimate AudioSignal
|
|
y : AudioSignal
|
|
Reference AudioSignal
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
L1 loss between AudioSignal attributes.
|
|
"""
|
|
if isinstance(x, AudioSignal):
|
|
x = getattr(x, self.attribute)
|
|
y = getattr(y, self.attribute)
|
|
return super().forward(x, y)
|
|
|
|
|
|
class SISDRLoss(nn.Module):
|
|
"""
|
|
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
|
of estimated and reference audio signals or aligned features.
|
|
|
|
Parameters
|
|
----------
|
|
scaling : int, optional
|
|
Whether to use scale-invariant (True) or
|
|
signal-to-noise ratio (False), by default True
|
|
reduction : str, optional
|
|
How to reduce across the batch (either 'mean',
|
|
'sum', or none).], by default ' mean'
|
|
zero_mean : int, optional
|
|
Zero mean the references and estimates before
|
|
computing the loss, by default True
|
|
clip_min : int, optional
|
|
The minimum possible loss value. Helps network
|
|
to not focus on making already good examples better, by default None
|
|
weight : float, optional
|
|
Weight of this loss, defaults to 1.0.
|
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
scaling: int = True,
|
|
reduction: str = "mean",
|
|
zero_mean: int = True,
|
|
clip_min: int = None,
|
|
weight: float = 1.0,
|
|
):
|
|
self.scaling = scaling
|
|
self.reduction = reduction
|
|
self.zero_mean = zero_mean
|
|
self.clip_min = clip_min
|
|
self.weight = weight
|
|
super().__init__()
|
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
eps = 1e-8
|
|
|
|
if isinstance(x, AudioSignal):
|
|
references = x.audio_data
|
|
estimates = y.audio_data
|
|
else:
|
|
references = x
|
|
estimates = y
|
|
|
|
nb = references.shape[0]
|
|
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
|
|
|
|
if self.zero_mean:
|
|
mean_reference = references.mean(dim=1, keepdim=True)
|
|
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
|
else:
|
|
mean_reference = 0
|
|
mean_estimate = 0
|
|
|
|
_references = references - mean_reference
|
|
_estimates = estimates - mean_estimate
|
|
|
|
references_projection = (_references**2).sum(dim=-2) + eps
|
|
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
|
|
|
scale = (
|
|
(references_on_estimates / references_projection).unsqueeze(1)
|
|
if self.scaling
|
|
else 1
|
|
)
|
|
|
|
e_true = scale * _references
|
|
e_res = _estimates - e_true
|
|
|
|
signal = (e_true**2).sum(dim=1)
|
|
noise = (e_res**2).sum(dim=1)
|
|
sdr = -10 * torch.log10(signal / noise + eps)
|
|
|
|
if self.clip_min is not None:
|
|
sdr = torch.clamp(sdr, min=self.clip_min)
|
|
|
|
if self.reduction == "mean":
|
|
sdr = sdr.mean()
|
|
elif self.reduction == "sum":
|
|
sdr = sdr.sum()
|
|
return sdr
|
|
|
|
|
|
class MultiScaleSTFTLoss(nn.Module):
|
|
"""Computes the multi-scale STFT loss from [1].
|
|
|
|
Parameters
|
|
----------
|
|
window_lengths : List[int], optional
|
|
Length of each window of each STFT, by default [2048, 512]
|
|
loss_fn : typing.Callable, optional
|
|
How to compare each loss, by default nn.L1Loss()
|
|
clamp_eps : float, optional
|
|
Clamp on the log magnitude, below, by default 1e-5
|
|
mag_weight : float, optional
|
|
Weight of raw magnitude portion of loss, by default 1.0
|
|
log_weight : float, optional
|
|
Weight of log magnitude portion of loss, by default 1.0
|
|
pow : float, optional
|
|
Power to raise magnitude to before taking log, by default 2.0
|
|
weight : float, optional
|
|
Weight of this loss, by default 1.0
|
|
match_stride : bool, optional
|
|
Whether to match the stride of convolutional layers, by default False
|
|
|
|
References
|
|
----------
|
|
|
|
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
|
"DDSP: Differentiable Digital Signal Processing."
|
|
International Conference on Learning Representations. 2019.
|
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
window_lengths: List[int] = [2048, 512],
|
|
loss_fn: typing.Callable = nn.L1Loss(),
|
|
clamp_eps: float = 1e-5,
|
|
mag_weight: float = 1.0,
|
|
log_weight: float = 1.0,
|
|
pow: float = 2.0,
|
|
weight: float = 1.0,
|
|
match_stride: bool = False,
|
|
window_type: str = None,
|
|
):
|
|
super().__init__()
|
|
self.stft_params = [
|
|
STFTParams(
|
|
window_length=w,
|
|
hop_length=w // 4,
|
|
match_stride=match_stride,
|
|
window_type=window_type,
|
|
)
|
|
for w in window_lengths
|
|
]
|
|
self.loss_fn = loss_fn
|
|
self.log_weight = log_weight
|
|
self.mag_weight = mag_weight
|
|
self.clamp_eps = clamp_eps
|
|
self.weight = weight
|
|
self.pow = pow
|
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
"""Computes multi-scale STFT between an estimate and a reference
|
|
signal.
|
|
|
|
Parameters
|
|
----------
|
|
x : AudioSignal
|
|
Estimate signal
|
|
y : AudioSignal
|
|
Reference signal
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
Multi-scale STFT loss.
|
|
"""
|
|
loss = 0.0
|
|
for s in self.stft_params:
|
|
x.stft(s.window_length, s.hop_length, s.window_type)
|
|
y.stft(s.window_length, s.hop_length, s.window_type)
|
|
loss += self.log_weight * self.loss_fn(
|
|
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
)
|
|
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
|
return loss
|
|
|
|
|
|
class MelSpectrogramLoss(nn.Module):
|
|
"""Compute distance between mel spectrograms. Can be used
|
|
in a multi-scale way.
|
|
|
|
Parameters
|
|
----------
|
|
n_mels : List[int]
|
|
Number of mels per STFT, by default [150, 80],
|
|
window_lengths : List[int], optional
|
|
Length of each window of each STFT, by default [2048, 512]
|
|
loss_fn : typing.Callable, optional
|
|
How to compare each loss, by default nn.L1Loss()
|
|
clamp_eps : float, optional
|
|
Clamp on the log magnitude, below, by default 1e-5
|
|
mag_weight : float, optional
|
|
Weight of raw magnitude portion of loss, by default 1.0
|
|
log_weight : float, optional
|
|
Weight of log magnitude portion of loss, by default 1.0
|
|
pow : float, optional
|
|
Power to raise magnitude to before taking log, by default 2.0
|
|
weight : float, optional
|
|
Weight of this loss, by default 1.0
|
|
match_stride : bool, optional
|
|
Whether to match the stride of convolutional layers, by default False
|
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_mels: List[int] = [150, 80],
|
|
window_lengths: List[int] = [2048, 512],
|
|
loss_fn: typing.Callable = nn.L1Loss(),
|
|
clamp_eps: float = 1e-5,
|
|
mag_weight: float = 1.0,
|
|
log_weight: float = 1.0,
|
|
pow: float = 2.0,
|
|
weight: float = 1.0,
|
|
match_stride: bool = False,
|
|
mel_fmin: List[float] = [0.0, 0.0],
|
|
mel_fmax: List[float] = [None, None],
|
|
window_type: str = None,
|
|
):
|
|
super().__init__()
|
|
self.stft_params = [
|
|
STFTParams(
|
|
window_length=w,
|
|
hop_length=w // 4,
|
|
match_stride=match_stride,
|
|
window_type=window_type,
|
|
)
|
|
for w in window_lengths
|
|
]
|
|
self.n_mels = n_mels
|
|
self.loss_fn = loss_fn
|
|
self.clamp_eps = clamp_eps
|
|
self.log_weight = log_weight
|
|
self.mag_weight = mag_weight
|
|
self.weight = weight
|
|
self.mel_fmin = mel_fmin
|
|
self.mel_fmax = mel_fmax
|
|
self.pow = pow
|
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
"""Computes mel loss between an estimate and a reference
|
|
signal.
|
|
|
|
Parameters
|
|
----------
|
|
x : AudioSignal
|
|
Estimate signal
|
|
y : AudioSignal
|
|
Reference signal
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
Mel loss.
|
|
"""
|
|
loss = 0.0
|
|
for n_mels, fmin, fmax, s in zip(
|
|
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
|
):
|
|
kwargs = {
|
|
"window_length": s.window_length,
|
|
"hop_length": s.hop_length,
|
|
"window_type": s.window_type,
|
|
}
|
|
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
|
|
loss += self.log_weight * self.loss_fn(
|
|
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
)
|
|
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
|
return loss
|
|
|
|
|
|
class GANLoss(nn.Module):
|
|
"""
|
|
Computes a discriminator loss, given a discriminator on
|
|
generated waveforms/spectrograms compared to ground truth
|
|
waveforms/spectrograms. Computes the loss for both the
|
|
discriminator and the generator in separate functions.
|
|
"""
|
|
|
|
def __init__(self, discriminator):
|
|
super().__init__()
|
|
self.discriminator = discriminator
|
|
|
|
def forward(self, fake, real):
|
|
d_fake = self.discriminator(fake.audio_data)
|
|
d_real = self.discriminator(real.audio_data)
|
|
return d_fake, d_real
|
|
|
|
def discriminator_loss(self, fake, real):
|
|
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
|
|
|
loss_d = 0
|
|
for x_fake, x_real in zip(d_fake, d_real):
|
|
loss_d += torch.mean(x_fake[-1] ** 2)
|
|
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
|
return loss_d
|
|
|
|
def generator_loss(self, fake, real):
|
|
d_fake, d_real = self.forward(fake, real)
|
|
|
|
loss_g = 0
|
|
for x_fake in d_fake:
|
|
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
|
|
|
loss_feature = 0
|
|
|
|
for i in range(len(d_fake)):
|
|
for j in range(len(d_fake[i]) - 1):
|
|
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
|
return loss_g, loss_feature
|
|
|