import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline device = "cpu" tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base").to(device) translator = pipeline("translation", model="facebook/nllb-200-distilled-600M") def paraphrase( question, num_beams=5, num_beam_groups=5, num_return_sequences=1, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=1024 ): input_ids = tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids.to(device) outputs = model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = tokenizer.batch_decode(outputs, skip_special_tokens=True) return res def translate(myinput): myout = translator(myinput,src_lang="eng_Latn",tgt_lang="fra_Latn") return myout def predict(mytextInput): out = translate(paraphrase(mytextInput)) return out iface = gr.Interface(predict, inputs="textbox", outputs="text", ) iface.launch(share=True)